
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 7: Composition and Linearity Testing
Oct. 17, 2005

Lecturer: Venkat Guruswami Scribe: Anand Ganesh & Venkat Guruswami

Last Class

- End Gap Amplification

- High level view of Composition

Today

- Formal Definition of AT = Assignment Tester

- Composition Theorem

1 Composition
We saw informally in the previous lecture that the composition step was recursion with a twist: the
“inner” the verifier needed to perform the following “assignment testing” task: Given an assign-
ment a to the variables of a constraint Φ, check if a is close to a satisfying assignment of Φ. The
formal definition follows. We say that two strings x, y are δ-far from each other if they differ on at
least a fraction δ of coordinates.

Definition 1.1 (Assignment Tester). A q-query Assignment Tester AT (γ > 0,Σ0) is a reduction
algorithm P whose input is a Boolean circuit Φ over Boolean variables X and P outputs a system
of constraints Ψ over X and set Y of auxiliary variables such that

• Variables in Y take values in Σ0

• Each ψ ∈ Ψ depends on at most q variables in X ∪ Y

• ∀a : X → {0, 1}

- If φ(a) = 1, then ∃b : Y → Σ0 such that a ∪ b satisfies all ψ ∈ Ψ

- If assignment ’a’ is δ-far from every a’ such that φ(a′) = 1 then ∀b : Y → Σ0, atleast
γ0δ fraction ψ ∈ Ψ are violated by a ∪ b

We first observe that the above definition is stronger than a regular PCP reduction:

• Φ satisfiable =⇒ ∃a ∪ b that satisfy all constraints in Ψ

1

• Φ not satisfiable =⇒ every assignment a : X → {0, 1} is 1-far from any satifsying
assignment (since no satisfying assignment exists!), and hence for every b : Y → Σ0, a ∪ b
violates Ω(1) fraction of constraints in Ψ. In particular, every assignment a∪b to the variables
of Ψ violates Ω(1) fraction of the constraints, like in a PCP reduction.

Theorem 1.2 (Composition Theorem). Assume existence of 2-query Assignment tester P (γ >
0,Σ0). Then ∃β > 0 (dependent only on P and poly(size(G))) such that any constraint graph
(G, C)Σ can transformed in time polynomial in the size of G into a constraint graph (G′, C ′)Σ0

denoted by G ◦ P such that

• size(G′) ≤ O(1)size(G)

• gap(G) = 0 =⇒ gap(G′) = 0

• gap(G′) ≥ β · gap(G)

Proof. The basic idea is to apply the AT P to each of the constraints c ∈ C and then define the
new constraint graph G′ based on the output of P . Since the AT expects as input a constraint over
Boolean variables, we need to first express the constraints of G with Boolean inputs. For this, we
encode the elements of Σ as a binary string.

The trivial encoding uses log(|Σ|) bits. Instead we will use an error correcting code e : Σ →
{0, 1}l where l = O(log |Σ|) of relative distance ρ = 1/4, i.e., with the following property:

∀x, y, x 6= y =⇒ e(x) is ρ-far from e(y)

i.e. x 6= y =⇒ ∆(e(x), e(y)) ≥ ρ · l

Let [u] denote the block of Boolean variables supposed to represent the bits of the encoding of
u’s label. For a constraint c ∈ C on variables u, v of G, define the constraint c̃ on the 2l Boolean
variables [u] ∪ [v] as follows:

c̃(a, b) = 1 iff ∃ α ∈ Σ and α′ ∈ Σ such that the following hold:
e(α) = a

e(α′) = b

c(α, α′) = 1.

Let c̃ : {0, 1}2l → {0, 1} be regarded as a Boolean circuit and fed to a 2-query AT. The output is
a list of constraints Ψc which can regarded as a constraint graph over Σ0, call it (Gc = (Vc, Ec), Cc)
(where [u] ∪ [v] ⊂ Vc), with the two variables in each constraint taking the place of vertices in the
constraint graph. To get the new constraint graph G′, we will paste together such constraint graphs
Gc obtained by applying the 2-query AT to each of the constraints of the original constraint graph.

Formally, the new constraint graph is (G′ = (V ′, E ′), C ′) over Σ0 where

• V ′ = ∪c∈CVc

• E ′ = ∪c∈CEc

2

• C′ = ∪c∈CCc
We will assume wlog that |Ec| is the same for every c ∈ C (this can be achieved by duplicating
edges if necessary).

We will now prove that the graph G′ obtained by the reduction above satisfies the requirements
of the Composition Theorem (??). Clearly, since the size of G′ is at most a constant times larger
than that ofG, since each edge inG is replaced by the output of the assignment tester on a constant-
sized constraint, and thus by a graph of constant (depending on |Σ|) size. Also, G′ can be produced
in time polynomial in the size of G.

The claim that gap(G′) = 0 when gap(G) = 0 is also obvious – beginning with a satisfying
assignment σ : V → Σ, we can label the variables in [u] for each u ∈ V with e(σ(u)), and
label the auxiliary variables introduced by the assignment testers P in a manner that satisfies all
the constraints (as guaranteed the property of the assignment tester when the input assignment
satisfies the constraint).

It remains to prove that gap(G′) ≥ β · gap(G) for some β > 0 depending only on the AT.
Let σ′ : V ′ → Σ0 be an arbitrary assignment. We want to show that σ′ violates at leats a

fraction β · gap(G) of the constraints in C ′. First we extract an assignment σ : V → Σ from σ′ as
follows: σ(u) = arg mina ∆(σ′([u]), e(a)), i.e., we pick the closest codeword to the label to the
block of variables (here we assume without loss of generality that σ′ assigns values in {0, 1} to
variables in [u] for all u ∈ V).

We know that σ violates at a fraction gap(G) of constraints in C. Let c = ce ∈ C be such a
violated constraint where e = (u, v). We will prove that at least a γ ·ρ/4 fraction of the constraints
of Gc are violated by σ′. Since the edge sets Ec all have the same size for various c ∈ C, it
follows that σ′ violates at least a fraction γ · ρ/4gap(G) of constraints of G′. This will prove the
composition theorem with the choice β = γ · ρ/4.

By the property of the assignment tester P , to prove at least γ · ρ/4 of the constraints of Gc are
violated by σ′, it suffices to prove the following.

Claim: σ′([u] ∪ [v]) is at least ρ/4-far from any satisfying assignment to c̃.
Proof of Claim: Let (σ′′([u]), σ′′([v])) be a satisfying assignment for c̃ that is closest to σ′([u] ∪
[v]). Any satisfying assignment to c̃ must consist of codewords of the error-correcting code e.
Therefore, let σ′′([u]) = e(a) amd σ′′([v]) = e(b). Moreover, c(a, b) = 1. Since σ violates c, we
have c(σ(u), σ(v)) = 0. It follows that either a 6= σ(u) or b 6= σ(v), let us say the former for
definiteness. We have

ρ ≤ ∆(e(a), e(σ(u))) ≤ ∆(e(a), σ′([u])) + ∆(σ′([u]), e(σ(u))) ≤ 2∆(e(a), σ′([u]))

where the last step follows since e(σ(u)) is the codeword closest to σ′([u]). Recalling, e(a) =
σ′′([u]), we find that at least a ρ/2 fraction of the positions σ′([u]) must be changed to obtain
a satisfying assignment to c̃. It follows that σ′([u] ∪ [v]) is at least ρ/4-far from any satisfying
assignment to c̃.

This completes the proof of the claim, and hence also that of Theorem 1.2.

The composition theorem needed a 2-query AT. We now show that bringing down the number
of queries to 2 is easy once we have a q-query AT for some constant q.

3

Lemma 1.3. Given a q-query Assignment Tester AT over Σ0 = {0, 1}, γ0 > 0, it is possible to
construct a 2-query AT over alphabet Σ′

0 = {0, 1}q and γ′0 = γ0
q

.

Proof. Let the q-query Assignment Tester AT be on Boolean variables X ∪ Y (where Y is the set
of auxiliary variables), with set of constraints Ψ. Define 2-query AT as follows. The auxiliary
variables are Y ∪ Z where Z = {zψ|ψ ∈ Ψ} is a set of variables over the alphabet Σ′

0 = {0, 1}q,
and the set of constraints Ψ′ include for each ψ ∈ Ψ a set of q constraints on two variables:
(zψ, v1), (zψ, v2), ...(zψ, vq) where v1, v2, . . . , vq are the variables on which ψ depends (if ψ depends
on fewer than q variables, we just repeat one of them enough times to make the number q). The
constraint (zψ, vi) is satisfied by (a, b) a satisfies ψ and a is consistent with b on the value given to
vi.

Clearly, if all constraints in Ψ can be saisfied by an assignment toX∪Y , then it can be extended
in the obvious way to Z to satisfy all the new constraints. Also, if a : X → {0, 1} is δ-far from
satisfying the input circuit Φ to the AT, then for every b : Y → {0, 1}, at least γ0δ fraction of ψ ∈ Ψ
are violated. For each such ψ, for any assignment c : Z → {0, 1}q, at least one of the q constraints
that involve zψ must reject. Thus, at least a fraction γ0δ

q
of the new constraints reject.

Later on, we will give a 6-query AT over the Boolean alphabet. By the above, this also implies
a 2-query AT over the alphabet {1, 2, . . . , 64}.

2 Linearity Testing
We will now take a break from PCPs and do a self-contained interlude on “linearity testing”.
Consider a function f : {0, 1}n → {0, 1} as a table of values, the question we now consider is ”Is
f linear ?”. Such questions are part of a larger body of research called property testing. First, we
define what we mean by a linear function.

Definition 2.1. (Linear functions) A function f : {0, 1}n → {0, 1} is linear if ∃S ⊂ {1, 2, ...n}
such that f(x) =

⊕
i∈S xi. Or equivalently, f is linear if there exists a ∈ {0, 1}n such that

f(x) =
⊕n

i=1 aixi.

Fact 2.2. The following two statements are equivalent:

• f is linear

• ∀x, y : f(x+ y) = f(x) + f(y)

For S ⊂ {1, 2, ...n}, define LS : {0, 1}n → {0, 1} as LS(x) =
⊕

i∈S xi. Say Ls(X) =∑
i∈S Xi. Given access to the truth table of a function f , linearity testing tries to distinguish

between the following cases, using very few probes into the truth table of f :

• f = LS for some S

• f is “far-off” from LS for every S

4

A randomized procedure for Linearity Testing uses 2.2 above. Instead of testing whether f(x+
y) = f(x) + f(y) for every pair x, y, we pick one pair (x, y) at random and apply the following
test: Is f(x+ y) = f(x) + f(y)? Thus we look at the value of f on only 3 places. We will explore
actual guarantees that this test provides in the next lecture, and go on to connect this with the proof
of the PCP theorem.

5

	Composition
	Linearity Testing

