
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 20: Course summary and open problems
Dec. 7, 2005

Lecturer: Ryan O’Donnell Scribe: Ioannis Giotis

Topics we discuss in this lecture:

• Quick recap of tools, sister subjects

• Best known PCP systems

• Open problems in PCPs

• Open problems in hardness of approximation

1 Tools, theorems and related subjects

• Two tools that we used in the course that are of significant utility in many other areas of
theoretical computer science are expanders and Fourier analysis.

• As for explicit theorems to take away from the class, the following three are the most useful:

– PCP theorem. The classic PCP theorem is most useful for proving that optimization
problems have no PTAS.

– E3LIN2. The1− ε vs1/2− ε hardness of this problem is most useful for proving that
problems have no approximation beyond a fixed constant factor; i.e., for statements
like “such-and-such maximization problem has no77

78
-approximation unless P= NP”.

– Raz’s Label Cover.The hardness of this problem is often useful for showing strong or
super-constant hardness-of-approximation results.

• Other areas on theoretical computer science that are related to PCPs and hardness of approx-
imation:

– Property testing.

– Coding theory.

– Approximation algorithms.

– Fourier analysis.

– Structural complexity.

– Cryptography.

– Pseudorandomness.
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2 Best known PCP systems for NP

We summarize here some best known PCP systems with respect to various parameters.

• Size: Although in class we only cared about the witness being of polynomial size, we can
take a closer look at PCP length in terms onn, the length of the classical proof for, say,
3SAT. The best known result with constantly many queries is due to Dinur[6] building on
work of Ben-Sasson and Sudan [3]; the proof length can beO(n · polylog(n)) bits. (Note: if
we want PCPs for all of NTIME(n), we already suffer at least aO(log n) blowup in witness
size in the best known version of Cook’s theorem.)

• Verifier time: Normally in PCP systems, the verifier reads the entire input (statement), does
polynomial time computation, and then queries only a sublinear number of bits of the proof.
We may hope to have a verifier that also runs in sublinear time; however it then has no time
to read the entire proof statement. However, if we are satisfied with Assignment Testers
rather than PCPs, we can hope to run in sublinear time. The best known result along these
lines is due to Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [4] and gives a version of
the previous result that also has polylogarithmic verifier running time.

• Soundness withO(1) queries to large alphabets:Consider PCPs for NP withO(log n)
randomness and constantly many queries over a large alphabet. In particular, when the
alphabet size ism, we might hope to get soundness≤ 1/mΩ(1). This seems harder and
harder to achieve asm grows larger. The best result along these lines is due to Dinur,
Fischer, Kindler, Raz, and Safra [7], who show such a result withm as large as2log1−γ n.
This holds for everyγ > 0, although the smallerγ is, the moreO(1) queries must be made.

• Soundness with 2 queries:If we insist on using only 2 queries, the best result along the
above lines is Raz’s Parallel Repetition result [20], which works for everym = O(1).

• Soundness withq queries to bits: Finally, consider the problem of achieving the lowest
possible soundness while makingq queries to a proof written in bits. Certainly we can’t hope
for soundness lower than2−q. The basic PCP theorem gives us2−Ω(q). A recent algorithm for
MAX- qCSP due to Hast [13] in fact shows we can’t have soundness lower thanO( q

log q
)2−q.

The (essentially) best result known is from Samorodnitsky and Trevisan [21], which gives
soundness22

√
q2−q (Engebretsen and Holmerin later got the 2 inside the square root). A

recent work of the same authors [22] shows that, assuming the Unique Games Conjecture,
this can be lowered to(q + 1)2−q for infinitely manyq.

3 Open problems in PCPs

Here is a brief list of important open problems in the theory of PCPs:

• Prove or disprove the Unique Games Conjecture. Currently there is no strong evidence for
either possibility.
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• Improve the soundness result in [?] to m = poly(n). This is also known as the “sliding scale
conjecture”, stated by Bellare, Goldreich and Sudan [2] in 1995.

• Give linear size PCPs for3SAT or prove size lower bounds.

• (Less important.) What is the best possible soundness for a PCP for NP which is nonadap-
tive, has perfect completeness, and queries only 3 bits. I.e., for NP⊆ na-PCP1,s[3, O(log n)],
how small cans be? The best published result is by Håstad [14], s = 3/4 + ε. An unpub-
lished work of Khot and Saket claimss < 3/4. Zwick [24] gave an approximation algorithm
for MAX-3CSP on satisfiable instances which satisfies a5/8 fraction of all clauses; he con-
jectures this is best possible, in which cases = 5/8 + ε is the best that could be achieved.

4 Open problems in hardness of approximation

There are still very many open problems in hardness of approximation; not every result is as sharp
as the7/8-algorithm and(7/8 + ε)-hardness of MAX-3SAT. Here we present a small selection of
interesting such problems:

MAX-2LIN(2). The best unconditional hardness result known is11/12 + ε, due to H̊astad [14]
using gadgets of Trevisan, Sorkin, Sudan and Williamson [23]. Assuming the Unique Games
Conjecture, we get the same hardness as in MAX-CUT,.878 + ε, where.878 is the Goemans-
Williamson approximation factor. The GW algorithm also works for MAX-2LIN(2).

MAX-2SAT. The best unconditional hardness result is21/22 + ε, due to the same authors as in
MAX-2LIN(2). Assuming UGC, the hardness isβ + ε, whereβ is a certain trigonometric quantity
equal to about.943 [18]. The best known algorithm, due to Lewin, Livnat and Zwick [19], achieves
a factor of .9401. [18] conjecture that their factorβ is optimal.

The question of(1 − ε)-satisfiable instances for MAX-2SAT is also interesting. The best al-
gorithm, due to Zwick [25], finds a(1 − Θ(ε1/3))-satisfying assignment. On the other hand, the
best known UGC-hardness result [18] shows that(1 − Θ(ε1/2)) is hard. Unconditionally, only
(1−Θ(ε)) is known hard.

Min-Vertex-Cover. Given an undirected graph, this is the problem of finding as small a set
of vertices as possible that touches every edge. There is a very easy greedy2-approximation
algorithm. Subject to UGC, this is best possible — Khot and Regev [16] give a (2 − ε) UGC-
hardness result. The best unconditional hardness result known is10

√
5 − 21 + ε ≈ 1.36 + ε, in a

very interesting paper of Dinur and Safra [9].

Coloring 3-colorable graphs. Given a graph, promised to be 3-colorable, this is the problem of
coloring it with as few colors as possible. Coloring with 3 colors is of course NP-hard. Coloring
with 4 colors is also known to be NP-hard, first proved using PCP technology by Khanna, Linial
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and Safra [15], and then later simplified to just a gadget (no PCPs) in [12]. The best known
algorithm usesn3/14 colors; this is due to Blum and Karger [5]. Assuming a Unique Games-like
conjecture, Dinur, Mossel and Regev [8] have shown that usingO(1) colors in NP-hard.

Min-Feedback-Arc-Set. This is the problem of, given a directed graph, delete as few arcs as
possible so that it becomes acyclic. This is known to have the same NP-hardness of approx-
imation as Vertex-Cover (so 1.36-hardness is known). The best algorithm achieves a ratio of
O(log n log log n) (Even, Naor, Schieber and Sudan [10]).

Sparsest-Cut. Equivalently, “Min-Edge-Expansion”: Given an undirected graph, minimize
|E(S, S̄)|/|S| over all setsS ⊂ V , |S| ≤ |V |/2. No hardness of approximation is known for
this problem; i.e., it might have a PTAS. The best approximation algorithm achieves a factor of
O(
√

log n); this is from the notable paper of Arora, Rao and Vazirani [1].

Min-Bisection. This is the same as MIN-CUT, except you are required to produce a cut that
partitions the graph into exactly equal parts (n/2 vertices on both sides). The best approximation
algorithm has factorO(log3/2 n), due to Feige and Krauthgamer [11]. The best hardness result is
an extremely weak one, due to Khot [17]: There is no(1 + ε)-approximation algorithm unless NP

is contained in DTIME(2nε′
).
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