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1 The GAP-SAT problem and the PCP theorem

In the last lecture we said we will prove NP-hardness of approximation algorithms. To do this,
we will follow the same approach that is used in NP-completeness — we convert an optimization
problem into a decision problem. For a concrete example recall theMAX-3ESAT problem: each
clause of the input boolean formula is an OR of exactly three literals and the goal is to find an
assignment that maximizes the number of satisfied clauses. We now define the decision version of
this problem.

Definition 1.1. GAP-E3SATc,s (0 < s ≤ c ≤ 1): Given anE3SAT formula onm clauses,

• output YES ifOPT ≥ cm;

• output NO ifOPT < sm;

• output anything ifsm ≤ OPT < cm.

Remark 1.2. Recall thatGAP-E3SAT being NP-hard means that there is a deterministic poly-
nomial time reduction,R, from your favorite NP-complete language (say3-COLOR) to E3SAT,
such that

• Completeness: givenG ∈ 3-COLOR,R(G) gives anE3SAT formula withOPT ≥ cm;

• Soundness: givenG 6∈ 3-COLOR,R(G) gives anE3SAT formula withOPT < sm.

Remark 1.3. GAP-E3SATc,s being NP-hard implies that there is no polynomial time
(

s
c

)
-factor

approximation algorithm forMAX-3ESAT unlessP = NP. To see this implication, assume we
have such an algorithm; we then show how to solve3-COLOR in polynomial time. To do this,
given a graphG apply the reductionR reducing it toE3SAT and then run the supposed

(
s
c

)
-

factor approximation algorithm. IfG ∈ 3-COLOR then this will produce an assignment that
satisfies at least

(
s
c

)
cm = sm clauses inR(G). If G 6∈ 3-COLOR, the algorithm will be unable

to produce an assignment that satisfies as many assm clauses ofR(G). Thus, we can distinguish
the two cases and get a polynomial time algorithm for3-COLOR.

In this lecture, we will show the following result.

Theorem 1.4.The following two statement are equivalent:
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1. The PCP theorem;

2. There exists an universal constants < 1 such thatGAP-E3SAT1,s is NP-hard.

Proof. We first show that the second statement implies the first. To this end assume that
GAP-E3SAT1,s is NP-hard. We will construct aPCP system for3-COLOR. Given an instance
G of 3-COLOR on n vertices, the verifierV runs the reduction from3-COLOR to E3SAT —
let ψ be the constructed formula onm clauses. The proof that the proverP will provide will be
an assignment to the variables inψ (note thatψ has polynomial (inn) many variables). Finally,
V useslogm = O(log n) random bits to choose a random clause (call this clauseφ), queries
the proof on the variables in the clause, and checks if the given assignment satisfiesφ. Note that
the number of positions probed here,C, is 3. We now show that the abovePCP system has the
required properties.

• Completeness: IfG ∈ 3-COLOR thenψ hasOPT = m. In this caseP can write down
the optimal assignment, which implies that all the clauses are satisfied, and henceV accepts
with probability1.

• Soundness: IfG 6∈ 3-COLOR thenψ hasOPT < sm. Thus for any assignmentP provides,
V picks a a satisfied clause with probability less thans; that is,V accepts with probability
less thans. The soundness can be brought down to1/2 by repeating the checkO(1) many
times independently in parallel.

We now show that the first statement of the theorem implies the second. To this end, assume
the PCP theorem. We will now give a deterministic polynomial time reduction from3-COLOR
to GAP-E3SAT1,s. We will think of the bits of the proof as variablesx1, x2, · · · , xpoly(n) for
anE3SAT formula. GivenG,R will first run the verifier’s polynomial time pre-computation steps.
ThenR enumerates all the2O(log n) = poly(n) = N random choices ofV — each choice gives
someC proof locations(xi1 , xi2 , · · · , xiC ) and a predicateφ on theC bits. R further canonically
convertsφ(xi1 , xi2 , · · · , xiC ) to an equivalent E3CNF formula (in this stepR may need to add
some auxiliary variables,y1, y2, · · · , yC′). Without loss of generality we may assume that each
equivalent E3CNF has exactlyK clauses whereK = C · 2C . Finally,R outputs the conjunction of
all thesem = N ·K clauses. We now argue that this reduction works.

• Completeness: IfG ∈ 3-COLOR then we know there is a proof that satisfies all of the ver-
ifier’s checks. Thus all of the E3CNF formulas the reduction outputs can be simultaneously
satisfied; i.e.,OPT = m as needed.

• Soundness: IfG 6∈ 3-COLOR, then for every proof (assignment to thexi’s) and assignment
to the auxiliary variables, at least half of the verifier’sN checks must fail. Whenever a check
fails, the corresponding E3CNF has at mostK − 1 = K(1 − 1/K) many satisfied clauses.
Thus overall, the number of simultaneously satisfiable clauses is at most

N

2
K(1 − 1/K) +

N

2
K = NK

(
1 − 1

2K

)
= m

(
1 − 1

2K

)
.
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Thus,OPT ≤ sm, wheres = (1 − 1
2K

), and this is an absolute constant less than 1 as
needed.

2 The proof of the PCP theorem and expanders

Armed with Theorem 1.4, we will prove the PCP theorem by showing thatGAP-E3SAT1,s is NP-
hard for somes < 1. Dinur’s paper in fact proves this version of the PCP theorem. Her proof uses
objects called expanders — in this and the next lecture, we will spend some time developing facts
about expanders.

To give a rough idea of where expanders fit in the scheme of things, here is a brief overview
of Dinur’s proof. Note that it is easy to see from the proof of Theorem 1.4 that the PCP theorem
is also implied by showing thatGAP3-COLOR1,s is NP-hard, where in this gap version, the
quantity we are interested in is the number of edges in a 3-coloring that are colored properly.
The way Dinur’s proof work is to start with the fact that3-COLOR is NP-hard, from which one
immediately deduces thatGAP3-COLOR1,1− 1

m
is NP-hard, wherem is the number of edges.

(This is because in any illegal 3-coloring, at least one edge must be violated.) The proof will try to
amplify the “soundness gap” from1

m
up to some universal constant. At each stage the proof will

be working with aconstraint graphG (initially, the constraints in the input to3-COLOR is that
the endpoints of each edge have differnt colors from{1, 2, 3}). In the most important step of the
proof, a new graphGt is constructed fromG, where the constraints inGt correspond to walks inG
of lengtht. If the constraint graphs are nicely structured (i.e., are constant-degreeexpanders) then
these walks inG will mix nicely.

3 Expanders

Roughly speaking, expanders are graphs that have no “bottlenecks”. In other words, they are
graphs with high connectivity. More formally, we will be interested in the following quantity:

Definition 3.1. Theedge expansionof a graphG = (V,E), denoted byφ(G), is defined as

φ(G) = min
S⊆V,|S|≤ |V |

2

|E(S, S)|
|S|

,

whereS = V \ S andE(S, S) = {(u, v) ∈ E | u ∈ S andv ∈ S}.

We sayG is anexpanderif φ(G) is “large” (at least some positive constant). Note however
that it is not hard to find such a graph; for example, the complete graph hasφ(G) ≥ Ω(n). The
challenge is to findsparseexpanders, especiallyd-regular expanders for some constantd. In fact
such sparse expanders exist and can be constructed explicitly.

Theorem 3.2. There exist constantsd > 1 andφ0 > 0 and an explicit family ofd-regular graphs
{Gn}n≥1 such thatφ(Gn) ≥ φ0.
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3.1 Alternate definition of expanders

We now consider an alternate way of looking at expanders. For anyd-regular graphG, let AG

denote theadjacency matrix, that is,AG
ij is 1 if (i, j) ∈ E(G) and0 otherwise (one could also work

with multi-graphs in which case for an edge(i, j), AG
ij would be the multiplicity of that edge).

For the all-ones vector,~v = ~1, AG~v = d · ~v; that is,~v is an eigenvectorwith eigenvalue
d. If A is a real and symmetricn × n matrix (asAG is) thenA hasn real-valued eigenvalues
λ1 ≥ λ2 · · · ≥ λn. ForAG, λ1 = d is easily seen to be the largest eigenvalue.

Definition 3.3. A d-regular graphG is an (n, d, λ)-expanderif λ = max{|λi(G)| : i 6= 1} =
max{λ2(G), |λn(G)|} andλ < d.

This definition of an expander is closely related to the definition we saw before.

Theorem 3.4. If G is a (n, d, λ)-expander then

φ(G)2

2d
≤ d− λ ≤ 2φ(G).

In other words, large expansion is equivalent to largespectral gap(that is,d − λ). We will
see the proof of the upper bound (which is the direction we actually need) next lecture. Explicit
constructions of expanders tend to work with this spectral definition:

Theorem 3.5. There exist explicit constantsd ≥ 3 andλ < d and an explicit (polynomial-time
computable) family of(n, d, λ)-expanders.

The second-largest eigenvalueλ of a real symmetricn × n is characterized as follows (via a
“Rayleigh quotient”):

λ = max
x∈Rn,x·~1=0,x 6=0

|〈Ax, x〉|
〈x, x〉

. (1)

Let us show this. AsA is a real symmetric matrix, there exists an orthonormal basis~v1, ~v2, · · · , ~vn

where each~vi is an eigenvector ofA. Lettingx = ~v2 yields a ratio in (1) of|λ2|; similarly, we can
let x = ~vn and get a ratio of|λn|. Thus, we certainly have≤ in (1). For the other direction, write
anyx as

∑n
i=1 ai~vi. Using〈x,~v1〉 = 0, we concludea1 = 0. NowAx =

∑n
=1 aiλi~vi and thus,

|〈Ax, x〉| =

∣∣∣∣∣
n∑

i=2

a2
iλi

∣∣∣∣∣ ≤
n∑

i=2

|λi|a2
i ≤ λ

n∑
i=2

a2
i = λ〈x, x〉

as required.

Finally, we conclude this lecture by proving a simple lemma that will be used in the proof of
the PCP theorem.

Lemma 3.6. If G is ad-regular graph on the vertex setV andH is ad′-regular graph onV then
G′ = G ∪H = (V,E(G) ∪ E(H))1 is ad+ d′-regular graph such that

λ(G′) ≤ λ(G) + λ(H)

1 Here the union of edges results in a mutliset.
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Proof. Choosex such that‖x‖ = 1, x ·~1 = 0 andλ(G′) = 〈AG′
x, x〉. Now

〈AG′
x, x〉 = 〈AGx, x〉 + 〈AHx, x〉

≤ λ(G) + λ(H).

The equality follows from the definition ofG′ and the inequality follows from (1).
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