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1 Recap

Recall from the last class our 2-query “6=” test for binary Long Codes. The test has a “noise
parameter”−1 < ρ < 0:

• Pickx ∈ {−1, 1}m uniformly at random.

• Form each bit inµ ∈ {−1, 1}m with the following bias:

µi =

{ −1 with probability 1−ρ
2

1 with probability 1+ρ
2

(1)

• Testf(x) 6= f(x · µ).

We showed that the success probability of the test was related to the “noise stability” of the func-
tion, as follows:

Pr [f passes] =
1

2
− 1

2

∑

S∈[n]

f̂(S)2ρ|S| =
1

2
− 1

2
Stabρ(f). (2)

Intuitively, the stability of a function measures its resistance to change when a small number of
bits are flipped. Thus, at least for “odd” functions —f satisfyingf(−x) = −f(x) — the more
noise stable they are, the more likely they are to pass this6= test.

2 Probability of various functions passing the test

The table below shows the success probability of our 2-query test on various Boolean functions.
Recall that another way to look at this probability is the following: Imagine the points of the
discrete cube{−1, 1}m lying in m-dimensional Euclidean space on the unit sphere (after scaling).
Imagine connecting pairs of points by edges if their inner product is roughlyρ. Then a Boolean
function is a cut in this graph (one side is the preimages of−1, the other is the preimages of1),
and the fraction of edges cut corresponds to the probability our test passes.

Note that one interesting class of functions/cuts are those that arise from halfspaces through
the origin. These cuts are called halfspace functions or threshold functions, and can be written as
f(x) = sgn(

∑m
i=1 aixi).
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Function f Pr [f passes]
1 f(x) = xi

1
2
− 1

2
ρ

2 f(x) ≡ −1 or 1 0

3 f(x) = maj(x) = sgn (
∑m

i=1 xi)
cos−1 ρ

π
asm →∞

4 f(x) = sgn (
∑m

i=1 aixi) ≈ cos−1 ρ
π

for “almost all” choices ofai’s
5 f(x) = maj3(x) = maj(x1, x2, x3)

1
2
− 3

8
ρ− 1

8
ρ3

6 f(x) = sgn(Ax1 + x2 + x3 + . . . xm) A blends between dictator and majority.

(All the functions mentioned above are halfspace functions, except for the constant functions.)
Function 1 is the “ith dictator function”, or “ith long code”. It is quite easy to check from

Equation (2) that the dictator functions (and their negations) are the functions with the highest
probability of passing our test. (Remember thatρ < 0, so a function wanting to pass the test should
try to get as much of its Fourier mass onto “level 1” as possible.) This is certainly something we
desire out of a long code test.

Function 2, the constant functions, caused us trouble in our earlier long code test for MAX-
3LIN. But in fact for our6= test, they pass with probability 0, so we needn’t worry about them.

Function 3 is the majority function over allm bits in the input. Last lecture we mentioned that
this function — which is not at all like a long code — is in some sense the worst case for our test.
As mentioned last time, and as we will later sketch with a geometric argument, asm → ∞, the
majority function passes our test with probability approachingcos−1 ρ

π
.

In Function 4 we consider “random” or “typical” halfspace functions. One can imagine that
ai’s are chosen independently and randomly from some nice probability distribution, such as Gaus-
sians. As we will see later, such functions also pass the test with probability aboutcos−1 ρ

π
(with

high probability). Thus the name “Majority Is Stablest” is a bit of a misnomer — any “random”
halfspace is essentially equally stable.

Function 5, the majority function on just the first three bits, demonstrates that non-long-codes
can still pass with probability significantly higher than that ofcos−1 ρ

π
. In particular, the graph of

1
2
− 3

8
ρ − 3

8
ρ2 is strictly between that of1

2
− 1

2
ρ and of cos−1 ρ

π
for all −1 < ρ < 0. This means

that a non-long-code can pass our6= test with probability noticeably higher than that for majority.
Still, this function is somewhat long-code-like in that it is strongly influenced by only a small
constant number of coordinates. We were able to handle similar situations before in the analysis
of Håstad’s long code test, where it was shown how to disregard functions with large, low-degree
Fourier coefficients.

Function 6 takes a parameter1 ≤ A ≤ m + 1; if A = 1, this is the majority function, if
A = m+1 this is the first-bit dictator functions. AsA grows, we can imagine a blend from major-
ity to dictator, and we can look at the probability the function passes the test. AsA increases, the
probability goes up, but so does the extent to whichf only depends on the first coordinate. As it
happens, the critical regime is aroundA = Θ(

√
n). Significantly below this,f ’s success probabil-

ity is still aroundcos−1 ρ
π

; whenA reaches this range, the success probability starts to get noticeably
larger. However, it’s also precisely at this point that the first coordinate starts to have a noticeable
amount of “influence” over the function. Note that we can’t say thatf essentially depends only on
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x1 in this case, but at leastx1 is influential.

2.1 Influences

Let us make this notion of “influence” more precise. Recall the following definition from the
homework:

Definition 2.1. Theinfluenceof theith coordinate onf : {−1, 1}m → {−1, 1} is

Infi(f) := Pr
x

[f(x) 6= f(x⊕i)],

wherex⊕i denotes the stringx with theith coordinate flipped.

From the homework, we saw the following:

Proposition 2.2.
Infi(f) =

∑

S⊆[m]:i∈S

f̂(S)2.

Some examples of the influences of some of the functions given above are as follows:

Infi(xj) =

{
1 if i = j,
0 otherwise.

Infi(maj3) =

{
1
2

if i ∈ {1, 2, 3},
0 otherwise.

Infi(maj) =

(
m− 1

m−1
2

)
2−m = Θ(1/

√
m) by Stirling’s approximation

3 Majority is Stablest

From the above examples we might conjecture that if a function has all of its influences “small”,
then the probability with which it passes the test cannot be much more thancos−1 ρ

π
. This conjecture

was made in [KKMO04], and then proved in [MOO05]. We will sketch the proof in the case that
the function is a halfspace cut.

Theorem 3.1(“Majority is Stablest” (MIS)). Let−1 < ρ < 0 andε > 0. Then there existsτ > 0,
depending only onρ andε, such that iff : {1,−1}m → {1,−1} hasInfi(f) < τ for all i ∈ [m],
thenPr [f passes] < cos−1 ρ

π
+ ε.
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Proof. (Partial sketch.) As mentioned, we will sketch the proof in the case thatf is a halfspace
function,f(x) = sgn(

∑m
i=1 aixi). We may assume by scaling all theai’s that

∑m
i=1 a2

i = 1. Under
this assumption, it can be checked that ifai is “large” thenInfi(f) is “large”. In particular, it can be
shown that our assumption thatf has all influences smaller thanτ implies that allai’s are smaller
thanO(τ) in absolute value.

Let’s now examine the probabilityf passes our test. In our test, we pick random vector~x ∈
{−1, 1}m according to the uniform distribution, random vector~µ ∈ {−1, 1}m according to the
1−ρ
2

-biased distribution, and then test that~a · ~x and~a · (~x~µ) have different signs. (Here~x~µ denotes
the coordinate-wise product.)

Imagine picking~µ first, and imagine fixing it to some “typical value”. This typical~µ will have
about a1−ρ

2
fraction of−1’s. Write~b for the vector~a~µ; i.e., the coordinate-wise product of~a and

~µ. Conditioned on this~mu, our test now takes the following form: “Pick~x ∈ {−1, 1}m at random
and check that~a · ~x and~b · ~x have opposite signs.

With ~a and~b fixed, let’s consider these random quantities,~a · ~x and~b · ~x. If a1 = 1 andai = 0
otherwise, the quantity~a ·~x will be distributed as a random±1, as will~b ·~x. We don’t actually have
to worry about this case though, since we get to assume allai’s are small in absolute value. As for
another case, imagineai = 1/

√
m for all i. Then~a · ~x is 1/

√
m times the sum ofm independent

±1 (as is~b · ~x). In this case, the Central Limit Theorem tells us that the distribution of~a · ~x will be
very close to that of a Gaussian random variable.

In fact, the Central Limit Theorem actually ensures that so long as allai’s are “small”, the
distribution of~a · ~x will be “close” to that of a Gaussian. (The same holds for~b · ~x.) Furthermore,
notice what would happen if we replaced~x with ~g, a random length-m vector with independent
Gaussiansin its coordinates. Then we get~a · ~g, which also has a Gaussian distribution (since the
sum of Gaussians is a Gaussian). To make a long story short, a “2-dimensional” version of the
Central Limit Theorem ensures that if allai’s are small in absolute value, thejoint distribution of
~a · ~x and~b · ~x is close to thejoint distribution of~a · ~g and~b · ~g.

This means that the probabilityf passes the test (conditioned on~µ) is close to

Pr[~a · ~g and~b · ~g have opposite signs]. (3)

Now~a and~b are just two fixed vectors inn-dimensional space, and~g is in fact a random vector that
is equally likely to point in any direction on then-dimensional sphere. Thus the probability we are
considering in (3) is precisely the probability we needed to analyze in the Goemans-Williamson
algorithm from last class. There, we showed that the probability was equal to the angle between~a
and~b, overπ. I.e.,

Pr[f passes] ≈ ∠(~a,~b)

π
=

cos−1(~a ·~b)/m
π

=
cos−1[(

∑m
i=1 µi) /m]

π
.

But with high probability over the choice ofµ, (
∑m

i=1 µi)/m ≈ ρ.
Thus we conclude that iff is a halfspace cut and all of its influences are small, then the

probability that it passes the test is at mostcos−1 ρ
π

plus something small — in fact, more strongly,

as we claimed earlier, it isequalto cos−1 ρ
π

plus or minus something small.
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3.1 Extensions

For our hardness result for MAX-CUT, we will actually need two slight, technical extensions of
the MIS Theorem (proved in [MOO05, KKMO04] respectively).

Theorem 3.2. The MIS Theorem still holds for functionsf : {−1, 1}m → [−1, 1]. The interpre-
tation we mean here is that for such functions,Infi(f) is definedby

∑
S3i f̂(S)2 and the success

probability of the test isdefinedby 1
2
− 1

2

∑
S ρ|S|f̂(S)2.

We need this extension because we will later essentially be applying our test to theaveragesof
functions.

The second extension requires a new technical definition:

Definition 3.3 (C-degree influence). Givenf : {−1, 1}m → [−1, 1] and an integerC ≥ 1, the
C-degree influencei onf is:

Inf≤C
i (f) =

∑

S3i,|S|≤C

f̂(S)2.

The extension is that the generalized MIS Theorem3.2still holds even if one only assumes that
all of f ’s low-degreeinfluences are small. This extension is the theorem we will use next class in
our hardness result for MAX-CUT:

Theorem 3.4(generalized MIS Theorem). Let−1 < ρ < 0 and ε > 0. Then there existsτ > 0

andC < ∞ such that iff hasInf≤C
i < τ for all i ∈ [m], then1

2
− 1

2

∑
ρ|S|f̂(S)2 < cos−1 ρ

π
+ ε.

4 Unique Games Conjecture

Using the hardness of Label-Cover, we have a number of optimal inapproximability results for
constraint satisfaction problems on 3+ variables; however, it seems difficult to prove such results
for 2-variable constraint satisfaction problems such as MAX-CUT. Recognizing this, in 2002 Khot
suggested the “Unique Games Conjecture”. To state it, we will need to recall the definition of
Unique-Label-Cover:

Definition 4.1 (Unique-Label-Cover). The definition of the Unique-Label-Cover (ULC) problem
is the same as Label-Cover, except with the additional constraint that that the constraints must be
bijections(permutations) on the label setΣ. In other words, for each label to one vertex in an
edge, there should be a unique label acceptable for the other vertex (in both directions).

A distinctive property of ULC(Σ) is that the problem of determining whether all constraints
can be satisfied is inP. The simple algorithm is as follows: For each connected component in
the graph, pick a vertex. Try all possible labels to the vertex and for each, try to label all other
connected vertices consistently. This can certainly be done inpoly(n, |Σ|) time. Thus we have the
following:

Fact 4.2. For all ε > 0, Gap-ULC(Σ)1,ε is notNP-hard for any|Σ|.
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We can now state the Unique Games Conjecture. (Note: the word “Games” comes from the
original phraseology in terms of 2-prover 1-round games.)

Definition 4.3. The Unique Games Conjecture [Kho02] (UGC): For everyδ > 0, there exists a
sufficiently largem such that Gap-ULC(Σ)1−δ,δ is NP-hard, for|Σ| ≥ m.

Remark 4.4. The UGC is now a fairly notorious open problem in theoretical computer science.
It has been used to show optimal hardness-of-approximation results for problems such as Vertex-
Cover, MAX-CUT, MAX-2LIN(q), and others. However there is no compelling evidence that it is
true, nor is there compelling evidence that it is false.

Remark 4.5. As mentioned, UGC may well be false; that is, Gap-ULC(Σ)1−δ,δ could be inP.
The best known algorithmic results for approximating Unique-Label-Cover are due to Charikar,
Makarychev and Makarychev [CMM06]. They show that, given a ULC(Σ) instance which is
(1 − δ)-satisfiable, one can efficiently find a labeling satisfying a1/|Σ|δ/2+O(δ2) fraction of the
constraints. The algorithm is a significantly souped-up version of the Goemans-Williamson semi-
definite programming algorithm. Any improvement on this guarantee would disprove the Unique
Games Conjecture, as the next remark shows.

Remark 4.6. A particular subproblem of ULC is MAX-2LIN(q), the problem of simultaneously
satisfying 2-variable linear equations modq. [KKMO04] showed the following: UGC⇒ Gap-
2LIN(q) with completeness1 − δ and soundness1/qδ/2+Ω(δ2) is NP-hard. This justifies the last
sentence of the previous remark, and also shows that, qualitatively,1− ε versusε′ gap hardness of
MAX-2LIN(q) is equivalentto the UGC.

Next time, we will show that UGC and the MIS Theorem imply that Gap-MAX-CUT with
completeness1

2
− 1

2
ρ − ε and soundnesscos−1 ρ

π
+ ε is NP-hard; i.e., UGC implies the Goemans-

Williamson algorithm is optimal.
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