
Lecture 12

Randomized Communication Complexity;
Branching Programs

May 8, 2008
Lecturer: Paul Beame

Notes: Punyashloka Biswal

12.1 Randomized Communication Complexity

12.1.1 Definitions

A randomized protocol P is a probability distribution on deterministic protocols P . The cost of a
protocol is defined by

cost(P) = supP∼Pcost(P).

Let P (x, y) denote the output of a deterministic protocol on inputs x and y, and let f : X×Y → Z.
Then we say that P computes f with (two-sided) error ε if

for all x ∈ X and y ∈ Y , Pr
P∼P

[
P (x, y) 6= f(x, y)

]
≤ ε.

In this definition, the random choice of protocol is independent of the inputs. We can equivalently
consider a model where Alice and Bob follow fixed protocols but share a random string which is
used to select the protocol.

We denote the randomized communication complexity of f with error ε, Rcc
ε (f), by

Rcc
ε (f) = inf

{
cost(P)

∣∣ P computes f with error ε
}
.

If we restrict attention to protocols where Alice and Bob only receive separate, independent
random strings, we get the randomized communication complexity model with private coins, which
is denoted by Rcc,priv.

12.1.2 Example: testing equality

We exhibit two randomized protocols for EQ = {(x, x) | x ∈ {0, 1}∗}, the language of pairs of equal
strings.

Private coin protocol

We view the inputs as n-bit integers x and y. Alice chooses a random prime p from among the first
4n primes and sends Bob the pair (p, x mod p). Bob computes y mod p and accepts if and only if
it equals x mod p.

1

By the prime number theorem, the largest prime p at most 4n log2 n and so is O(log n) bits long.
It is clear then that this protocol has cost Θ(log n) and always accepts when x and y are equal.
Now x mod p = y mod p if and only if p divides x − y. If x, y ∈ [n] are distinct then |x − y| < 2n

and so has at most n distinct prime factors. Since there 4n choices for p, the probability that x
and y are congruent modulo p is at most 1/4. This shows that Rcc,priv

1/4 (EQ) is O(log n). This can
be shown to be asymptotically optimal.

Shared coins

We view the inputs x and y as vectors in Fn
2 , and the random string as two vectors s and t. Alice

sends Bob the pair (s · x, t · x) where the inner products are computed over F2. Bob accepts if and
only if the pair sent by Alice matches (s · y, t · y).

Again, it is clear that this protocol has constant cost and always accepts when x equals y.
When the inputs are unequal, the probability that s · (x − y) = 0 is exactly 1/2. Because s and t
are chosen independently, this shows that Rcc

1/4(EQ) is O(1).

12.1.3 The value of shared randomness

The Θ(log n) difference between the costs of the private-coin and public-coin protocols for the last
example is actually tight, because of the following result.

Theorem 12.1 (Newman) For any randomized ε-error protocol P computing f , there is an
(ε + δ)-error protocol P ′ that uses O(log(1/δ) + log n) bits of shared randomness.

Proof [Proof idea] Use Chernoff bounds to show that we can choose a subset S ⊆ suppP of size
polynomial in n and 1/δ, such that the error bound remains valid when P is chosen uniformly from
this subset. Then only log2 |S| bits of shared randomness are required.

We can now have a protocol with private randomness in which Alice chooses the value for the
shared random string in the protocol produced by Newman’s theorem and sends this to Bob, after
which both players execute the protocol with shared randomness.

12.1.4 Distributional communication complexity

Let µ be a probability distribution on X × Y . Then we write

Dcc
µ,ε(f) := inf

{
cost(P)

∣∣ Pr
µ

[
f(x, y) 6= P (x, y)

]
≤ ε

}
for the cost of protocol P on input distribution µ. The Yao Minimax Lemma establishes a dual-
ity between randomized protocols and distributional adversaries, allowing us to prove tight lower
bounds on the randomized complexity of a problem by exhibiting a hard input distribution.

Theorem 12.2 (Yao Minimax Lemma) Let f : X × Y → Z be any function and let ε > 0.

1. For any distribution µ over X × Y , Rcc
ε (f) ≥ Dcc

µ,ε(f).

2. There exists a distribution µ∗ for which Rcc
ε (f) = Dcc

µ∗,ε(f).

2

Proof This theorem can be viewed as a consequence of linear programming duality, though
historically it follows from Von Neumann’s Minimax Lemma in game theory from 1927 which
pre-dated LP duality. We will sketch a direct proof of the first part.

Let Π be the set of all deterministic protocols of cost Rcc
ε (f), and define the zero-one matrix M

as follows. For (x, y) ∈ X × Y and P ∈ Π define

M(x,y),P :=

{
1 P (x, y) 6= f(x, y)
0 otherwise.

By the definition of Rcc
ε (f), we know that there is a distribution π = P over columns such that for

each (x, y) ∈ X × Y ,
ε(x, y) =

∑
P∈Π

M(x,y),P π(P) ≤ ε

where ε(x, y) is the probability that the randomized protocol is incorrect on input (x, y). Now if
we fix an input distribution µ over X × Y , we have

ε ≥
∑

(x,y)∈X×Y

µ(x, y)ε(x, y) =
∑

(x,y)∈X×Y
P∈Π

µ(x, y)M(x,y),P π(P) =
∑
P∈Π

ε(P)π(P),

where ε(P) =
∑

X×Y µ(x, y)M(x,y),P is the probability that protocol P is incorrect for a random
input (x, y) chosen according to µ. Since π is distribution over Π it must be that minP∈Π ε(P) ≤ ε.
Fixing the protocol P ∈ Π achieving this minimum shows that Dcc

µ,ε(f) ≤ Rcc
ε (f).

There is nothing particularly special about communication complexity in the above lemma. It
generally applies to any combinatorial model of randomized computation.

12.1.5 Lower bounds

The chief technique used to prove lower bounds on randomized communication complexity is the
discrepancy method. The discrepancy of a function measures how close it is to random by consid-
ering how balanced it is on large nicely-structured sets of inputs; in particular on combinatorial
rectangles.

Recall that a combinatorial rectangle in X × Y is a set of the form A × B, where A ⊆ X and
B ⊆ Y . Formally, the discrepancy of a function f : X × Y → {0, 1} over a combinatorial rectangle
R, under an input distribution µ, is given by

discµ,R(f) :=
∣∣µ(

f−1(0) ∩R
)
− µ

(
f−1(1) ∩R

)∣∣,
and the discrepancy of f under µ is defined as

discµ(f) := max
rectangles R

discµ,R(f).

Roughly speaking, a protocol divides the input space X × Y into combinatorial rectangles over
which it gives a constant answer. A function of small discrepancy must be far from constant on any
large rectangle. Therefore, a function of small discrepancy forces a protocol of small error to divide
the space into a large number of small rectangles, which requires many bits of communication. This
intuition is made precise in the following theorem, which is easy prove given the above intuition
but which we state without proof:

3

Theorem 12.3 Dcc
µ,ε(f) ≥ lg

(
1− 2ε

discµ(f)

)
.

Along with the Yao minimax lemma, this lets us prove lower bounds on randomized commu-
nication complexity. In particular, the following bound can be shown on discrepancy of the Inner
Product function.

Lemma 12.4 (Lindsay’s Lemma) Let U be the uniform distribution on {0, 1}n × {0, 1}n, and
let IP : {0, 1}n × {0, 1}n → {0, 1} map (x, y) 7→ x · y mod 2. Then discU (IP) � n2/2n.

This immediately implies that Rcc
ε (IP) = Ω̃ε(n).

A method called the 1-sided discrepancy method or corruption method can be used to show
linear lower bounds for the randomized communication complexity of the set disjointness (set
intersection) problem, which we recall was given by DISJ(x, y) =

∨
i(xi ∧ yi). Unlike the inner

product function, under the uniform distribution the DISJ function has large discrepancy (at least
1/n) since at least a 1/n fraction of all of DISJ−1(1) has xi = yi = 1. However, DISJ has the
property that under suitable distributions rectangles R such that µ(R∩DISJ−1(1)) ≤ εµ(R) must
be exponentially small which yields good communication complexity bounds for a similar reason
to discrepancy.

12.1.6 Multi-party communication complexity

There are circumstances in which it is necessary to understand or one can make use of communica-
tion protocols in which there are more than two players. There are two possible generalizations of
the standard communication model to more than two players. In both of them, there are k players
who wish to collaboratively compute a function f :

∏k
i=1 Xi → Y .

• The number in hand model, where player i initially knows only input xi. These can be used
to prove lower bounds for streaming algorithms.

• The number on forehead model, where player i initially knows all the xjs where j 6= i. (Since
each player can view all the other players’ inputs it is as if they are written on their foreheads.)
This leads to lower bounds on circuit complexity and time-space tradeoffs.

Based on the fact that ACC circuits as computable via symmetric function of quasi-polynomially
many AND gates of polylog fan-in, one can show that multiparty communication complexity lower
bounds in the number of forehead model for logω(1) n players can yield circuit lower bounds on
ACC. The best current lower bounds apply when the number of players is less than log2 n.

12.2 Branching Programs

12.2.1 Definitions

An R-way branching program on n variables x1, . . . , xn is a directed, acyclic graph in which all
internal nodes have out-degree R, each internal node is labelled with a variable xi, each edge is
labelled with a value in [R], and each leaf is labelled with a value from some set Y . Any assignment
of values to variables defines a path through the branching program, chosen by starting at the root
and repeatedly following the edge labelled by the value of the variable corresponding to the current

4

node. Therefore, the branching program defines a function [R]n → Y given by the label of the leaf
node at the end of the path. We often consider Boolean branching programs which edges and leaves
have labels from {0, 1}.

The size of a branching program is the number of nodes in the graph. We write BP (F) for
the optimal size of a branching program for f . The length of a branching program is the length of
the longest path; it corresponds to the running time. A branching program is said to be levelled
if all paths are of the same length; when this is the case, we can speak of the internal nodes at a
particular level. A levelled branching program is said to be oblivious if the label of an internal node
only depends upon its level. A branching program is said to be read-once if any variable appears
at most once as a label on a path from the root to a leaf node. Read-once oblivious branching
programs are also called (ordered) binary decision diagrams. If a branching program is levelled, we
say that it has width equal to the maximum number of nodes at any level. We shall see below that
for many bounds, there is no loss of generality if we only look at levelled BPs.

Boolean branching programs are like Boolean decision trees with identified internal nodes.
Branching programs can dramatically save on the number of nodes required relative to decision
trees. For example, Parityn requires 2n − 1 node decision trees but can be computed the a simple
read-once oblivious branching program with 2 nodes per level, one such that the parity of variables
tested so far is 0 and the other that it is 1.

Theorem 12.5 If a function f can be computed by an (arbitrary) branching program of length
T and size s, then it can also be computed by a levelled branching program of length T and size
sT + 1.

Proof Make T copies v1, . . . , vT of every node v in the branching program. For each edge (u, v)
in the original branching program put an edge (ui, vi+1) for i = 1, . . . , T − 1. (Add similar edges
from the root to level 1.)

12.2.2 Connections to uniform complexity

Lower bounds on the branching program size and length imply corresponding lower bounds on
uniform complexity, as shown in the following theorem.

Theorem 12.6 Let f be any function.

1. If f ∈ TIME-SPACE
(
t(n), s(n)

)
, then there exists a branching program computing f of size

2O(s(n)+lg n) and length O(t(n)).

2. If f has a RAM algorithm with inputs in [R]n that has running time t(n) and takes space
s(n) (where the model is unit-cost with respect to time and log-cost with respect to space),
there is an R-way branching program for f of size 2O(s(n)+lg n) and length O(t(n)).

Proof We will prove the first part of the claim; the second part is similar. Let M be a TM that
computes f in time t(n) and space s(n). As in the proof of Savitch’s theorem, we shall construct
a branching program whose nodes correspond to the part of the configurations of M that do not
include the input. That is, each consists of the state of M , the position of the read head on the
input tape, and the content and positions of the read/write heads on its storage tapes. The index of

5

the variable read by a node corresponds to the location of the M ’s input head in that configuration,
and the outgoing edges go to the configurations it would read in the next step depending on the
value of the input bit.

Going in the reverse direction, we see that polynomial-sized branching programs provide a useful
non-uniform version of L, deterministic log-space.

Remark: In discussing the RAM model above we use the term log-cost with respect to space iff
the space bound is the number of memory locations multiplied by the number of bits per word of
memory; i.e. the total number of bits of memory. Unit-cost with respect to time means that each
memory access counts for one unit of time. If one allows unit cost for both time and space then
by repeated multiplications one can quickly create enormous integers which allow such a model to
simulate PSPACE.

12.2.3 Connections to circuit complexity

Recall that L(f) is the minimum number of leaves of a formula computing f and size(f) is the
circuit size of f over the basis {∨,∧,¬}.

Theorem 12.7 Let f : {0, 1}n → {0, 1} be any function.

1. BP (f) is O(L(f)).

2. size(f) is O(BP (f)).

Proof Let F be a minimal-size formula for f . We shall proceed inductively. If F = ¬F ′, then
we construct the branching program for F ′ and switch the labels on the leaves. If F = F1 ∨ F2,
then we begin by constructing the corresponding branching programs P1 and P2 for F1 and F2

respectively. Then we make the 1-output node of P1 an output node for the whole BP, and we
connect the 0-output node to the start node of P2. A similar conversion for the case F = F1 ∧ F2

completes the proof.
On the other hand, let P be a minimal-size branching program for f . We work inductively

from the output nodes which become the associated constant inputs for the circuit. Then any node
with label xi and outedges to P0 and P1 on 0 and 1 respectively can be replaced in the circuit
by a node computing the equivalent value (xi ∧ P ′

1) ∨ (¬xi ∧ P ′
0) where P ′

0 and P ′
1 are the circuit

nodes corresponding to P0 and P1 respectively. Applying this conversion throughout the branching
program gives us a circuit of size O(BP (f)).

A simple counting argument shows that there exist functions that require exponential-size BPs:
there are 22n

functions {0, 1}n → {0, 1}, but only sO(s) BPs of size s. Just as for formulas finding
explicit functions for which there are size lower bounds if much harder. Nečiporuk proved an analog
of his result about formulas (see Lecture 7) for branching programs. The reason that this is also
possible for BPs (unlike circuits) is that we can associate each part of the BP with a particular
variable.

6

Theorem 12.8 (Nečiporuk) Let B1, . . . , Bk be a partition of [n]. Then there is a constant c > 0
such that for any function f : {0, 1}n → {0, 1},

BP (f) ≥
k∑

i=1

c log(|SUB(f,Bi)|)/ log log(|SUB(f,Bi)|).

In particular the following lower bound is a consequence.

Corollary 12.9 The element distinctness function EDN : [N2]N → {0, 1} is defined as

ED(x1, . . . , xN) :=
∧
i6=j

(xi 6= xj).

Then BP (EDN) = Ω(N2).

Since EDN takes 2N log N bits of input, this is actually a Ω(n2/ log2 n) bound in our usual
notation. This is the largest size lower bound known for any explicit function.

One way to try to get better size lower bounds is to consider restricted classes of branching
programs to see if one can prove better size lower bounds. One of the first approaches was to
consider levelled BPs and restrict their width to be constant. By applying the simulations of
circuits by branching programs described above One can easily see for each that for constant
m any functions in AC0[m] can be computed by constant-width polynomial-size BPs. However,
constant-width polynomial-size BPs turned out to be surprisingly much more powerful than that.

Recall that NC1 is the set of all functions f : {0, 1}∗ → {0, 1} of polynomial formula size
(equivalently computable by formulas or circuits of polynomial size and logarithmic depth).

Theorem 12.10 (Barrington) A Boolean function f : {0, 1}∗ → {0, 1} can be computed by a
polynomial-sized, width-5, oblivious branching program if and only if f ∈ NC1.

Proof We begin with the easy direction, showing how to convert any width-5 oblivious BP into
an equivalent NC1 circuit. We view the edges for each level of a width-5 BP as a pair of functions
`0 and `1 mapping [5] → [5]. The input variable xi queried at this stage determines which function
is applied. In fact, the operation of an entire width-5 branching program can be described by a
function mapping [5] → [5]. In particular an oblivious width-5 branching program of length m is
described by level functions `j

0 and `j
1 for j = 1, . . . ,m and by the sequence i1, . . . , im of indices

of variables queried. Then the function describing the operation of the BP as a mapping from [5]
to [5] is given by the composition `m

xim
◦ · · · ◦ `1

xi1
. (The output is the resulting function applied

to 1.) Since function composition is associative, we can write a circuit for the composition using
a full binary tree of function compositions whose inputs are created using selection on the xij to
determine which of `j

0 and `j
1 to include in the composition. There is a circuit of constant size and

depth that takes two binary strings representing functions from [5] to [5] and produces a binary
string representing their composition so the resulting circuit has O(log m) depth and size O(m).

For the interesting direction of the proof, we shall systematically construct a family of BPs to
represent any log-depth polynomial-size circuit C which we can assume is a De Morgan formula.
Let S5 be the group of permutations on five elements, and let G ⊆ S5 be the subgroup consisting
of all 3-cycles. As above we can view every level of a width-5 oblivious BP as a pair of functions

7

`0, `1 : [5] → [5], one of which is chosen depending on the value of the variable read. In our
construction, we will always set `0 to the identity map, and we will choose `1 from G.

The key property of G that we will use is that there are permutations σ, τ ∈ G such that
στσ−1τ−1 is not the identity. (This existence follows because G is a non-solvable group.) In
particular, (1 2 3)(3 4 5)(3 2 1)(5 4 3) = (2 3 5). For every NC1 circuit C(x) and element π ∈ G
that is not the identity, we shall show how to construct a BP Mπ such that Mπ(x) acts as the
identity if C(x) = 0, and π if C(x) = 1 (equivalently, Mπ(x) = πC(x)). It is clear how to do this
when C(x) is a constant or a literal.

When C(x) = ¬C ′(x), then we inductively construct a BP M ′
π−1 for C ′, and then use it to

construct Mπ(x) = πM ′
π−1(x) where πM ′ for branching program M ′ amounts to renumbering its

input nodes according to π.
When C(x) = C ′(x) ∧ C ′′(x), then we find σ, τ ∈ G such that π = στσ−1τ−1 by renaming

the points (2 3 5) to be the points of the cycle π in the construction given above. We inductively
construct machines M ′

σ and M ′
σ−1 for C ′, and M ′′

τ and M ′′
τ−1 for C ′′. Then we build the program

Mπ = M ′
σM ′′

τ M ′
σ−1M

′′
τ−1 .

Observe that if C ′(x) = 0 then M ′
σ(x) and M ′

σ(x) compute the identity and the resulting BP
applied to x computes the permutation ττ−1 which is the identity. The analogous case applies
when M ′′

τ (x) and M ′′
τ−1(x) both produce the identity. Therefore the function on [5] computed

Mπ(x) is the identity if C(x) = 0 and is π if C(x) = 1.
When C(x) = C ′(x) ∨ C ′′(x), then we reduce to the previous case using De Morgan’s law,

i.e., C(x) = ¬
(
¬C ′(x) ∧ ¬C ′′(x)

)
. The size of the BP grows by a factor of 4 for each binary

gate and remains the same for each negation ¬. By induction, the length of the resulting BP is
4depth(C) = 4depth(f). Since depth(C) is O(log n) the BP constructed is polynomial size.

8

