
Lecture 11

Monotone Functions, Monotone circuits, and
Communication Complexity

May 6, 2008
Lecturer: Paul Beame

Notes: Widad Machmouchi

In the last lecture, we used the method of approximation to derive lower bounds on the size of
any circuit that computes parity using AC[q] circuits. Now, we look at monotone boolean functions
and derive lower bounds on the monotone complexity of the CLIQUE function using the method
of approximation. We also introduce some notions from communication complexity and tie them
to circuit depth and formula size.

11.1 Monotone functions

Let x, y ∈ {0, 1}n. We say x . y iff ∀i, xi ≤ yi. In other words, xi = 0 whenever yi = 0.

Definition 11.1 (Monotone function) A function f : {0, 1}n → {0, 1} is monotone iff x . y ⇒
f(x) ≤ f(y)

Every monotone Boolean function is computable in the basis (∧,∨). We can use monotone
functions, namely slice functions, to compute any boolean function.

Definition 11.2 Let f : {0, 1}n → {0, 1} be a boolean function. For each i ∈ [n], let the slice
function fi(x) be defined as follows:

fi(x) =


1 if |x| > i

f(x) if |x| = i

0 if |x| < i.

Hence, f(x) =
∨n

i=0(fi(x) ∧ (|x| = i)).

The slice functions fi are monotone even if f is not. Since checking whether |x| = i can be done
in O(n2) circuit size (actually O(n log n) size using O(logn) depth networks of comparators due to
Ajtai, Komlos, and Szemeredi), it’s enough to find lower bounds on size(fi) to get lower bounds
on size(f). This helped foster the belief in the early 1980’s that monotone and non-monotone
complexities would be quite similar.

This belief also generated especial excitement over lower bounds on the monotone complexity
CLIQUE function. CLIQUEn,k takes

(
n
2

)
inputs representing an undirected graph G on n nodes

1

and outputs 1 iff there exists a clique of size k in G. Note that CLIQUE is a monotone function
since adding an edge to the graph won’t remove any existing cliques. We will show that CLIQUE
cannot be computed by polynomial-size monotone circuits.

Theorem 11.3 (Razborov, Andre’ev, Alon-Boppana) There exists ε > 0 such that for all
k ≤ n1/4, sizeΩ(CLIQUEn,k) > 2ε

√
k, where Ω = (∨,∧).

Proof We will use the method of approximation. Let ` =
√

k/10 and m = (100l log n)``!. Define
the (m, `)−approximator f as f =

∨m
i=1 CSi , where the clique indicator CS(G) = 1 if G has S as a

clique and 0 otherwise and each Si ⊆ [n] has size at most `. We will combine the approximators to
form a circuit based on any monotone circuit for CLIQUEn,k, the final function much either make
a lot of errors on graphs that are just the edges of a k-clique or the edges of complete (k−1)-partite
graphs but each approximation along the way will introduce relatively little error. Therefore, the
circuit size must be large to accomulate such errors.

The circuit will be constructed by induction. The base case will be clique indicators for each
edge. Hence if u and v are two nodes in G, C{u,v} = xuv. For any two (m, `)−approximators f
and g, we will approximate f ∨ g by an (m, `)-approximator f t g, and approximate f ∧ g by an
(m, `)-approximator f u g as follows. Let f =

∨m
i=1 CSi and g =

∨m
j=1 CTj .

• f t g: This will be the approximator of f ∨ g. Consider h = CS1 ∨ CS2 ∨ . . . ∨ CSm . . . ∨
CT1 ∨CT2 ∨ . . .∨CTm . h is not an (m, `)−approximator since it coule be the OR of more than
m clique approximators. We will reduce the up to 2m clique indicators to only m using the
following sunflower lemma:

Lemma 11.4 (Sunflower lemma: Erdos-Ko-Rado) Let U1, U2, . . . , Ur be distinct sets
of size at most ` on a universe of size n. Given an integer p, there exists m = (p− 1)``! such
that every collection of at least m sets contain a sunflower of size p; i.e. there exist p sets
U1, U2, . . . , Up and a set U , called the core such that Ui ∪ Uj = U for all i 6= j ∈ [p]. (The
Uj − U are called the petals of the sunflower.)

As long as we have more than m distinct sets, we apply the sunflower lemma to replace
the collection of p sets by their core. Note that we don’t lose anything in the case of graphs
consisting of a k-clique and we incur only an exponentially small loss in p on complete (k−1)-
partite graphs, since any such graph must fail to satisfy one of the p petals which are disjoint
from each other. This will occur at most m times.

• f u g: This will be the approximator of f ∧ g. Consider h = CS1∪T1 ∨ CS1∪T2 ∨ . . . ∨S1∪Tm

∨CS2∪T1 ∨ . . . CS2∪Tm ∨ . . .∨CSm∪T1 ∨ . . .∨CSm∪Tm . Again, h is not an (m, `)−approximator
since it is the OR of m2 approximators of sets of size possibly > `. To reduce them, we will
discard all CZ where |Z| > ` and repeatedly apply the sunflower lemma to get only m disjoint
sets of size ≤ `. Again, this involves at most m2 uses of the sunflower lemma which will cause
only an exponentially small loss for (k − 1)-partite graphs. Discarding clique indicators of
size > ` may also cause a loss in the k-clique graphs accepted since ` is small relative to
k (less than

√
k). However, only an exponentially small fraction of all k-cliques contain a

given `′-clique S′ for `′ > `. Therefore the error is small for both the positive and negative
examples.

2

Since each approximator incurs only a small error and the whole circuit incurs a large error,
we conclude that such circuit will have a large size. The rest involves doing the calculations and
choosing the parameters to balance things. we omit the details.

It is not hard to see that the argue crucially relies on the fact that there are inputs with few 1’s
for which the function is 1 and inputs with many 1’s for which the function is 0 – this is a property
completely unlike a slice function. Also CLIQUE is not the only monotone function for which this
method applies. In fact, it works for monotone functions that have polynomial size non-monotone
circuits.

Theorem 11.5 (Razborov) sizeΩ(BIPARTITE −MATCHING) is nΩ(log n).

Theorem 11.6 (Tardos) There exists an ε > 0 and a monotone function (related the the Lovasz-
θ function) having polynomial circuit size over the De Morgan basis such that size(f) is at least
2nε

.

11.2 Communication complexity

Let f : X × Y → Z be a function, where X, Y and Z are sets. In the communication complexity
model there are two parties, Alice and Bob, who each have a part of the input: Alice has the X
part and Bob has the Y part. They want to communicate in a way to compute f .

Definition 11.7 A 2-party communication protocol P of f is a binary tree with each internal node
v labeled by a function av : X → {0, 1} or a function bv : Y → {0, 1}. The out-edges of an internal
node v are labeled by 0 or 1 and each leaf is labeled by an element of Z. Define cost(P) to be the
height of the tree and leaves(P) to be the number of leaves of the tree. Hence leaves(P) ≤ 2cost(P).

The communication complexity of f is given by optimizing over all its communication protocols.

Definition 11.8 The deterministic communication complexity of f is given by:

Dcc(f) = min
P, P computes f

cost(P)

. Although it is a bit non-standard, we also define

Lcc(f) = min
P, P computes f

leaves(P)

We will represent each function f by a matrix Mf with |X| rows, each representing an x ∈ X,
and |Y | columns, each representing a y ∈ Y . Hence, Mf (i, j) = f(xi, yj) for all i ∈ [|X|] and
j ∈ [|Y |].

Definition 11.9 A combinatorial rectangle R in X × Y is a set of the form A×B for A ⊆ X and
B ⊆ Y .

We will divide Mf into ”monochromatic” combinatorial rectangles, i.e. rectangles over which
the function is constant.

3

Lemma 11.10 A protocol P computing f induces a partition of X × Y into r = leaves(P)
combinatorial rectangles R on which f is constant.

Proof For each node v in P , we define a rectangle Rv. We will define the rectangles inductively.
Start with the root: Rroot = X × Y . Assume that a node v is labeled by the function av and
Rv = Av ×Bv. Let s and t be the children of v such that the edge (s, v) is labeled 0 and the edge
(t, v) is labeled 1. Then

Rs = (Av ∩ {x ∈ X | av(x) = 0})×Bv

and
Rt = (Av ∩ {x ∈ X | av(x) = 1})×Bv.

Note that Rv = Rs∪̇Rt. The case when v is labeled by a function bv is analogous.
At a leaf `, R` will the set of (x, y) such that the functions labeling the nodes along the path

from the root to ` output the edge labels along the path. Since at the leaves the communication
between Alice and Bob has stopped and the protocol has output the label z at `, then R` is the set
of (x, y) such that f(x, y) = z. Moreover, the paths from the root to the leaves differ at least by
one edge label, hence if `1 and `2 are two different leaves in P , R`1 ∩R`2 = ∅ as required.

Example 11.11 Let X = Y = {0, 1}n. Define the function EQ : X×Y → {0, 1} by EQ(x, y) = 1
if x = y and 0 otherwise. Then MEQ has 1’s along the diagonal and 0 in all other entries. Hence the
number of monochromatic rectangles is > 2n and Dcc(EQ) ≥ n + 1 since every diagonal element
must be in its own rectangle.

Let f : X × Y → {0, 1} be a function and Mf be its corresponding matrix. Let R = A × B
such that f(R) = 1. Consider MR, the matrix over X × Y that is 1 in the elements in R and 0
otherwise. Hence, Mf =

∑
R MR. Now rank(MR) = 1 and using the fact that rank is subadditive

– that is rank(M1 + M2) ≤ rank(M1) + rank(M2) – we get the following corollary.

Corollary 11.12 For any Boolean function f : X×Y → {0, 1}, we have Dcc(f) ≥ log(rank(Mf)).

Note that the matrix MEQ is the 2n × 2n identity matrix which has full rank which yields a
lower bound of n.

The so-called log-rank conjecture tries to tie Dcc(f) to log(rank(Mf)). The conjecture is
that Dcc(f) = [log(rank(Mf))]O(1). The original form of the conjecture whas that Dcc(f) is
O(log(rank(Mf))) but this was shown to be false with the coonterexample being a function which
is a recursive 3-ary tree of gates each of which if its 3 inputs are not all equal. The best upper
bound is thtat Dcc(f) ≤ rank(Mf).

11.2.1 The Set Disjointness problem

Now, we will consider the set disjointness problem, or equivalently (and more appropriately) the
set intersection problem. Let X = Y = {0, 1}n. Define DISJ(x, y) =

∨n
i=1(xi ∧ yi). Looking at x

and y as sets in [n], you get that this function is 1 if and only if the sets they represent intersect.
We will use the so-called fooling set method to prove that Dcc(DISJ) ≥ n.

Let S and T be two different sets in [n] and consider the inputs (S, S̄), (S, T̄), (T, S̄) and (T, T̄).
Since S 6= T , either S 6⊆ T and hence DISJ((S, T̄)) = 1 , or T 6⊆ S and hence DISJ((T, S̄)) = 1.

4

Therefore, (S, S̄) and (T, T̄) cannot be in the same monochromatic rectangle or else (S, T̄) and
(T, S̄) would also be in the same rectangle with them. Hence, you need a rectangle for each input
of the form (S, S̄), i.e there are at least 2n 0-rectangles.

Now we move to computing relations in X × Y × Z. Given a function f : {0, 1}n → {0, 1},
define Rf ⊆ f−1(0)× f−1(1)× [n] by

(x, y, i) ∈ Rf ⇔ xi 6= yi.

We can relate the communication complexity of Rf to the circuit complexity of f .

Lemma 11.13 (Karchmer and Wigderson) For any Boolean function f , depth(f) = Dcc(Rf)
and L(f) = Lcc(Rf).

Proof If you have a circuit for f , let Alice play the ∧ gates and say which child evaluates to 0
on x and let Bob do the same for the ∨ gates and say which child evaluates to 1. Hence we get a
function of smaller depth that can differentiate between x and y and we can proceed by induction
until we get a single bit that differentiate them.

If you have a protocol for Rf , you can construct by induction a circuit that computes f by
looking at the output of the functions that Alice and Bob compute to differentiate x from y.

If f is monotone, we modify the relation in the following way: (x, y, i) ∈ Rm
f ⇔ xi < yi. We get

the analogous results as the lemma above.

Lemma 11.14 Let Ω = {∧,∨}. Then depthΩ(f) = Dcc(Rm
f) and LΩ(f) = Lcc(Rm

f).

The following results give monotone depth complexity bounds for some monotone functions:

Theorem 11.15 (Karchmer and Wigderson) Let Ω = {∧,∨}. Then depthΩ(PATH) is
Ω(log2 n).

This proof is a direct argument.

Theorem 11.16 (Raz and Wigderson) Let Ω = {∧,∨}. Then depthΩ(BIPARTITE −
MATCHING) is Ω(n).

This proof goes by randomized reduction and essentially uses lower bounds on the randomized
communication complexity of the set disjointness function. We will consider this next time.

Note how the second bound compares with the earlier results that sizeΩ(BIPARTITE −
MATCHING) is nΩ(log n). It is open whether the monotone size lower bound for BIPARTITE−
MATCHING can be improved to 2Ω(n).

5

