
Lecture 10

Lower bounds for constant-depth circuits

May 1, 2008
Lecturer: Paul Beame

Notes:

Let R`
n be the set of all restrictions on n variables that leave precisely ` variables unset. Since

decision tree complexity D(f) = D(¬f), we can restate the decision tree version of H̊astad Switching
Lemma as follows:

Lemma 10.1 (H̊astad’s Switching Lemma) Let b ∈ {0, 1} and f : {0, 1}n → {0, 1} be a func-
tion with Cb(f) ≤ r then for ρ chosen uniformly at random from R`

n,

Pr[D(f |ρ) ≥ s] <

(
8`r

n− `

)s

.

We use this to derive lower bounds for AC circuits computing Parity.

Theorem 10.2 Any AC circuit computing Parityn using size S and depth d satisfies S ≥
2n1/(d−1)/17.

Proof Let C be any AC circuit of size S and depth d. For each node v in C let fv be the function
of the inputs computed at node v. We count the height of a node v to be the maximum number of
AND or OR gates on any path from v to an input node.

Define n1 = n/17 and, more generally, let

ni+1 =
n

17(17 log2 S)i

for 0 ≤ i < d. We will show that for each 1 ≤ i ≤ d there is a restriction ρi ∈ Rni
n such that for

every node v at height at most i above the leaves of C, D(fv|ρi) ≤ log2 S.
For any node v of height 1, either C0(fv) = 1 or C1(fv) = 1. Therefore we can apply the

switching lemma with r = 1, s = log2 S and ` = n1 = n/17 to say that for ρ ∈ Rn1
n , the probability

Pr[D(fv|ρ) ≥ log2 S] < (
8n/17

n− n/17
)s = 2−s = 1/S.

Therefore by a union bound over the at most S nodes of the probability that there exists a node
v of height 1 with D(fv|ρ) ≥ log2 S is strictly less than 1. By the probabilistic method there must
exist a restriction ρ satisfying this property for all gates of height 1. Call this restriction ρ1.

For the inductive step, consider nodes u of height i + 1 for i > 0. Observe that if u is an OR
node then by the inductive hypothesis, D(fv|ρi) ≤ log2 S for some ρi ∈ Rni

n and all nodes v that are

1

inputs to u. It follows that C1(fv|ρi) ≤ log2 S for all such nodes and therefore C1(fu|ρi) ≤ log2 S.
We apply the switching lemma with r = log2 S, s = log2 S and ` = ni+1 to say that for ρ chosen
randomly from R

ni+1
ni ,

Pr[D(fv|ρiρ) ≥ log2 S] = Pr[D((fv|ρi)|ρ) ≥ log2 S] < (
8ni+1 log2 S

ni − ni+1
)s = (

8ni/17
ni(1− 1/(17 log2 S)

)s < 2−s = 1/S.

Similarly, if v is an AND gate we use C0 and if v is a NOT gate we simply complement the decision
tree of its child. Since (fv|ρi |ρ = fv|ρiρ the probability that a random ρ fails at some node of height
i + 1, given that lower heights have all been successful, is then < 1. Again using the probabilitic
method we obtain an ρi+1 = ρiρ in R

ni+1
n as required.

Now D((Parityn)|ρd
) = nd since (Parityn)|ρd

is another parity function or its negation and
therefore must have decision tree height nd. Therefore log2 S ≥ nd = n

17d(log2 S)d−1 . Rewriting we

obtain that (17 log2 S)d ≥ n and therefore S ≥ 2n1/d/17.
We can do a little better by only applying ρd−1 and using the fact that C0(Paritynd−1

) =
C1(Paritynd−1

) = nd−1 . If the output gate is an AND gate, say, then each node v at height d− 1
has C0((fv)|ρd−1

≤ log2 S and therefore the output has C0 value at most log2 S. If the output is
an OR gate then we use that C1((fv)|ρd−1

≤ log2 S and so the output has 1-certificate complexity
C1 at most log2 S. Therefore log2 S ≥ nd−1 = n

17d−1(log2 S)d−2 . It follows that (17 log2 S)d−1 ≥ n.

Therefore S ≥ 2n1/(d−1)
/17 as required.

In particular, this proves that Parity is not in AC0. In fact, polynomial-size AC circuits for
parity must have much more than constant depth.

Corollary 10.3 The depth complexity of polynomial-size AC circuits for Parity is
Θ(log n/ log log n)

Proof If we set the circuit size S to be polynomial in n then we must have that n1/(d−1)/17
is at most log2 S which is O(log n). Therefore d is Ω(loglogn

n) = Ω(log n/ log log n). Previously,
we showed that there are AC circuits of polynomial size and O(log n/ log log n) depth for any NC1

function.

Here’s one important corollary that I did not get to in class. It was part of the original motivation
for Furst, Saxe, and Sipser.

Lemma 10.4 There is an oracle A such that PHA 6= PSPACEA.

Proof Define the language

Parity(A) = {1n : |A ∩ {0, 1}n| is odd}.

Clearly Parity(A) ∈ PSPACEA since a Turing machine with O(n) space can make all 2n calls to A
on elements of {0, 1} and count the number of accepted strings.

Now, as we have seen, we can view each Σp
k or Πp

k algorithm as an unbounded fan-in circuit
with ∨’s of fan-in 2q(n) for each ∃ quantifier and ∧’s of the same fan-in for each ∀ quantifier for
some polynomial q. Moreover, when we add the ability to make oracles calls we can extend the

2

last ∃ quantifier to guess the values of all oracle calls so that polynomial-time predicate depends
only on the conjunction of the answers to its oracle calls. We can view each oracle answer A(y) for
y ∈ {0, 1}n as an input variable to our circuits. Therefore since the input a Σp

k or Πp
k algorithm

with oracle for A computing Parity(A) yields an unbounded fan-in circuit of depth k + 2 and size
2O(kq(n)) that computes Parity2n . Letting N = 2n, these have size 2logO(1) N which is impossible
for any constant k so Parity(A) ∈ PSPACEA − PHA.

10.1 Unbounded fan-in circuits with modular counting gates

In the above we have seen that Parity is hard for unbounded fan-in circuits. What happens if we
add unbounded fan-in parity gates ⊕ to the circuits? These gates compute the sum of the inputs
modulo 2. We can generally think about the analogous computation modulo p but since we need
Boolean values for the other gates we consider the MODp gates given by

MODp(x1, . . . , xn) =

{
0 if

∑n
i=1 xi ≡ 0 (mod p)

1 otherwise.

Definition 10.5 Let AC0[p] denote the set of functions f : {0, 1}∗ → {0, 1}∗ omputable by
constant-depth unbounded fan-in circuits of ¬, ∨, and MODp gates. (For convenience we
don’t include unbounded fan-in ∧ gates since they are not necessary.) A common alterna-
tive notation this is ACC0

p where ACC stands for alternative circuits with counters. Also define
ACC =

⋃
p AC[p] =

⋃
p ACC0

p.

Theorem 10.6 (Razborov,Smolensky) MODp /∈ AC0[q] for all primes p 6= q.

Since we easily have MODp ≤AC0 Majority we easily have:

Corollary 10.7 Majority /∈ AC0[p] for all primes p.

Both of the above statements can be extended to prime powers involving distinct primes. We
will not prove this in its full generality. For simplicity we will just show that ⊕ /∈ AC0[q] for any
odd prime q. We will obtain a lower bound nearly as strong as for AC0.

Theorem 10.8 Any AC[p] circuit computing ⊕ on n bits in size S and depth d must have S ≥
1
50qn1/(2d)/(q−1).

Proof The proof of this theorem introduces the Method of Approximation. The general idea of
this method is to consider a class of approximating functions and to define an approximator g̃ for
each gate g in the given circuit C. If gate g has inputs y1, . . . , y` where the yi themselves depend
on the input x then we require that g̃(y) = g(y) for all but at most an ε fraction of x. If we denote
the output of the circuit C by C(x) then the above will show that C̃(x) = C(x) except for at most
an Sε fraction of inputs x. If one can show that any approximator in the class must disagree from
the function to be computed in at least a δ fraction of inputs, then Sε ≥ δ which yields a lower
bound of S ≥ δ/ε.

3

The class of approximators we will consider will be polynomials over Fq of somewhat small total
degree.

Observe that by Fermat’s Little Theorem since q is prime

MODq(y1, . . . , y`) = (y1 + · · ·+ y`)q−1.

In this case there is loss at all and if we have polynomials of degree d for each of the yi then the
degree of MODq(y1, . . . , y`) is at most (q − 1)d.

Similarly ¬y = (1− y) which is also exact.
The place we will approximate is in computing ∨(y1, . . . , y`). If we wanted to do this exactly

we would use the polynomial 1−
∏`

i=1(1− yi) which has degree equal to the sum of the degrees of
the yi which might be very large.

Instead, we use the following trick using the probabilistic method due to Razborov, which is a
simpler form of the construction of Valiatn-Vazirani.

Choose ~r uniformly at random from F`
q and consider

∑
i riyi in Fq. Now if ∨`

i=1yi = 0 then∑`
i=1 riyi = 0. On the other hand if ∨`

i=1yi = 1 then Pr[
∑`

i=1 riyi = 0] = 1/q. Therefore
Pr[

∑`
i=1 riyi)q−1 6= ∨`

i=1yi] ≤ 1/q.
To improve the approximation for this ∨ gate well we will do this k times independently and

take the ∨ of the result. Therefore,

Pr[1−
k∏

j=1

(1−
∑̀
i=1

rijyi)q−1) 6= ∨`
i=1yi] ≤ q−k.

Now the yi depend on the input vector x so for any fixed input over a random choice of the k
vectors ~r, the expected fraction of errors is at most q−k. Therefore averaging over all inputs and
random vectors we get an error fraction at most q−k. It follows that there is some choice of the
random vectors that makes an error on at most a q−k fraction of inputs. Fix that random choce
and define the approximator for that gate to be 1 −

∏k
j=1(1 −

∑`
i=1 rijyi)q−1). This increases the

degree by at most a k(q− 1) factor. Putting this all together we have proved the following lemma:

Lemma 10.9 (Approximation Lemma) For any integer k and any AC[q] circuit C of size S
and depth d there is a polynomial over Fq of degree at most [(q − 1)k]d that agrees with C on all
but at most an S/qk fraction of input vectors.

For a circuit C computing Parityn we choose k = n1/(2d)/(q − 1) which implies that there is
a degree

√
n polynomial that agrees with C on all but an S/qn1/(2d)/(q−1) fraction of inputs. We

obtain a lower bound on S by the following lemma.

Lemma 10.10 No polynomial of degree
√

n over Fq agrees with Parityn on more than∑
i≤n/2+

√
n

(
n
i

)
≤ 49

502n inputs in {0, 1}n.

Proof Let P be a polynomial of degree
√

n. Let G ⊆ {0, 1}n be the set of inputs x on which
P (x) = Parityn(x). We find it convenient to use {1,−1} rather than {0, 1} in the representation of
the inputs and outputs of our functions where the mapping φ from {0, 1} to {1,−1} takes bit b to
(−1)b. (This representation is also convenient for Fourier analysis of Boolean functions.) Note that

4

φ(Parityn(x1, . . . , xn)) = (−1)
Pn

i=1 xi =
∏n

i=1 φ(xi). In particular, setting yi = φ(xi) = (−1)xi ,
note that

Parity′n(y1, . . . , yn) = φ(Parityn(φ−1(y1), . . . , φ−1(yn))) = y1y2 · · · yn,

computes a canonical monomial.
Now, despite the fact that it looks like exponentiation, the function φ is a degree 1 map over

Fq; for x ∈ {0, 1}, we have φ(x) = 1− 2x. The same is true for φ−1, since φ−1(y) = 2−1(1− y) and
2 is invertible in Fq. Let G′ ⊆ {1,−1}n = {(φ(x1), . . . , φ(xn)) | (x1, . . . , xn) ∈ G}. Since φ is 1-1,
|G′| = |G|. Since φ and φ−1 are degree 1 maps we can compose them with the polynomial P to
produce a polynomial P ′ in the yi that has degree

√
n and equals Parity′n(y1, . . . , yn) = y1y2 · · · yn

on all inputs in G′.
We use this strange ability to approximate a generic high degree function by the low degree

polynomial P ′ to derive the bound. Let FG′ = {f : G′ → Fq} so |FG′ | = q|G|. Now by simple
interpolation, any function defined on G′ ⊆ {1,−1}n can be written as a polynomial in the y1, . . . , yn

with coefficients in Fq. Moreover, this polynomial’s monomials can be assumed to be multilinear
in the yi since y2

i = 1 for yi ∈ {1,−1}. We use P ′ to reduce the degree of any such polynomial.
We can use the correctness of P ’ on G′ to express any monomial

∏
i∈T yi with |T | > n/2 as

y1y2 · yn ·
∏

i/∈T yi = P ′ ·
∏

i/∈T yi on G′. This shows that any function in FG′ can be expressed
as a multilinear polynomial of degree at most n/2 +

√
n. The number of such polynomials is

q
P

i≤n/2+
√

n (n
i). Therefore |G| ≤

∑
i≤n/2+

√
n

(
n
i

)
≤ (1− γ)2n where γ ≥ 1/50 is a fixed constant by

standard properties of the binomial distribution.

We now complete the proof of the theorem using the two lemmas and choice of k = n1/(2d)/(q−
1). Combining the lemmas we have that that (1−S/qk)2n ≤ 49

502n and thus S/qk ≥ 1/50. Therefore
S ≥ 1

50qn1/(2d)/(q−1) as required.

The above proof completely breaks down when considering moduli. In fact the following ques-
tion is still open.

Open Problem 10.11 Is NP ⊆ AC0[6]?

The only lower bound we have for all of ACC0 applies in the uniform case and uses a clever
downward translation and diagonalization.

Theorem 10.12 (Allender-Gore) PERM /∈ uniform− ACC0.

10.2 Threshold Circuits

Since Majority is not in any AC0[p] it is natural to ask what happens if one allows unbounded
fan-in Majority gates. One can make this more general still by allowing arbitrary threshold gate
of the form

g(x1, . . . , x`) =

{
1 if

∑
i wixi ≥ θ

0 otherwise.

Such circuits with smoothed threshold behaivor are sometimes called neural nets.

5

Definition 10.13 Let TC0 be the set of a functions computed by constant=depth polynomial-size
threshold circuits.

It is not hard to show that Iterated-Addition is in TC0. One can extend this to all the basic
arithmetic functions, though the case for Division is fairly complicated. Clearly we also have that
ACC0 ⊆ TC0.

It is also known that one can convert any polynomial-size threshold circiut into one that only
uses majority gates (all constants wi are 1) by adding 1 to the depth. Current lower bounds bounds
say little beyond depth 2 circuits.

The following theorem was first proved by Allender for AC0 using little more than the con-
struction from the Razborov-Smolensky proof and then it was extended to ACC0 by Yao and
Beigel-Tarui.

Theorem 10.14 Any function in ACC0 can be expressed as a depth 3 TC circuit of size 2logO(1) n

and bottom fan-in logO(1) n. In particular it can be expressed as a symmetric function of 2logO(1) n

ANDs of fan-in logO(1) n of variables and their negations.

6

