
Lecture 9

Decision Trees, Certificate Complexity, and

H̊astad’s Switching Lemma

April 29, 2008

Lecturer: Paul Beame

Notes: Ben Birnbaum

9.1 Decision Tree Complexity

Definition 9.1 A Boolean decision tree is a rooted binary tree with each internal node labeled by
the name of a variable and each leaf labelled by either 0 or 1.

A decision tree as computes a function f : {0, 1}n → {0, 1} as follows: On input x, the following
process is repeated starting at the root v of the tree: The variable xi that labels v is queried. If xi

is 1, then the right child of v is queried; otherwise, the left child of v is queried. The value of f(x)
is the label at the leaf to which this process leads.

Definition 9.2 For a function f : {0, 1}n → {0, 1}, let the decision tree complexity of f , D(f) =
min{height(T) | T computes f}.

Clearly, D(ORn) = D(Parityn) = n. One way that a function may have small decision tree
complexity is if it does not depend on all its inputs. In fact, there are natural functions f that
depend on all their inputs for which D(f) is o(n). Consider, for example an indexing function in
which the first log n bits of the input represent an integer that gives the offset into the rest of the
input. The function returns the bit at that offset. In other words, the input is (〈i〉 , x) and the
output is xi. Clearly, there is a decision tree that computes this function of depth log2 n + 1.

9.2 Certificate Complexity

Recall that a partial Boolean assignment ρ on n variables, which is also known as a restriction,
may be represented as a function ρ : {0, 1}n → {0, 1, ∗}. For a restriction ρ, we use the notation |ρ|
to denote the number of values that ρ assigns. We say that ρ is consistent with an input x iff for
all i, either ρ(i) = xi or ρ(i) = ∗.

Definition 9.3 For b ∈ {0, 1}, we say that a partial assignment ρ is a b-certificate for a function
f : {0, 1}n → {0, 1} if f |ρ(x) = b for all x ∈ {0, 1}n.

1

Definition 9.4 For b ∈ {0, 1} and a function f : {0, 1}n → {0, 1}, let

Cb(f) = max
x∈f−1(b)

min
{

|ρ| : ρ is b-certificate consistent with x}

be the b-certificate complexity of f .

Note that C1(ORn) = 1, C0(ORn) = n, and C1(Parityn) = C0(Parityn) = n. Also, note that
an equivalent definition of C1 and C0 is

C1(f) = min
DNF formulas F≡f

{length of longest term in F}

C0(f) = min
CNF formulas F≡f

{length of longest clause in F} .

Proposition 9.5 For a function f : {0, 1}n → {0, 1}, a 0-certificate for f , ρ0, and a 1-certificate
for f , ρ1, there must be at least one i ∈ [n] such that ρ0(i) 6= ρ1(i) and both ρ0(i) and ρ1(i) are in
{0, 1}. In other words, any 0-certificate and 1-certificate must intersect and be inconsistent.

Theorem 9.6 For any function f : {0, 1}n → {0, 1},

1. C0(f) ≤ D(f) and C1(f) ≤ D(f), and

2. D(f) ≤ C0(f) · C1(f).

Proof To prove the first part, let T be a minimum-height decision tree for f . Let x be any input
for which f(x) = b for b ∈ {0, 1}. The partial assignment given by the path determined by x is a
b-certificate for f , and it has size less than D(f). Hence Cb(f) ≤ D(f).

We now prove the second part. Let F = T1 ∨ T2 ∨ · · · ∨ Tk be a DNF formula for f such
that the maximum term size is C1(f). We will build a decision tree for f term by term. Let
T1 = (xb1

i1
∧ . . . ∧ xbℓ

iℓ
) where xb

i = xi if b = 0 and xb
i = ¬xi if b = 1.

The part of the decision tree that corresponds to T1 will have ℓ levels, with variable xij being
queried at each node at level j. The path in this tree that satisfies T1 will end at a leaf labelled 1.
For every other assigned π to the variables xi1, . . . , xiℓ leading to a leaf, we add the subtree that is
computed recursively starting at T2 in F |π. (Note that π can be thought of either as a path or a
partial assignment.)

Each step in this recursive construction adds at most C1(f) levels, so if we can prove that there
are most C0(f) recursive steps, then we are done. This follows easily from Observation 9.5: the set
of variables in T1 (or any other term) can be part of a 1-certificate; therefore every 0-certificate must
contain at least one of these variables. Hence, for any path π in the part of the tree corresponding
to T1, we have C0(f |π) ≤ C0(f)− 1. Since the 0-certificate complexity decreases by 1 at each level
in the recursion, the recursion can have a depth of at most C0(f).

In the above proof, the construction of the decision tree from the DNF formula is done in
canonical fashion given any fixed ordering of the terms of F and ordering of the literals in each
term. We will analyze this canonical construction in the context of constant-depth circuits.

2

9.3 Constant-depth Circuits and H̊astad’s Switching Lemma

We know that Parityn requires DNF or CNF formulas of size at least n2n−1. These are depth 2
circuits. We will see that Parity requires exponential-size circuits of any constant depth.

Theorem 9.7 (Furst-Saxe-Sipser, Ajtai) Parity /∈ AC
0.

The basic idea of the argument is that under any restriction ρ of the input values D(Parityn|ρ) =
|unset(ρ)| = n − |ρ| whereas D(ORn) = 0 for most restrictions. However, by repeated application
of restrictions we can simplify each layer of unbounded fan-in gates in any small constant-depth
circuit and therefore such circuits cannot compute parity.

Originally this was done using a so-called ”switching lemma” that allowed one to replace ORs
or small ANDs by ANDs of small ORs after applying a restriction. The strongest of these is due
to H̊astad. We find the following form of switching lemma more convenient.

Let Rℓ
n be the set of all restrictions on n variables that leave precisely ℓ variables unset.

Lemma 9.8 (H̊astad’s Switching Lemma) Let f : {0, 1}n → {0, 1} be a function with C1(f) ≤
r then for ρ chosen uniformly at random from Rℓ

n,

Pr[D(f |ρ) ≥ s] <

(

8ℓr

n − ℓ

)s

.

Proof Let F be a DNF formula of term size at most r that represents f . We use a counting
argument that is a variant of one suggested by Razborov. We will show that the set of all ρ ∈ Rℓ

n

such that D(f |ρ) ≥ s is small by giving a 1-1 map from such ρ to the set

Rℓ−s
n × stars(r, s) × {0, 1}s

where stars(r, s) ⊆ ({∗,−}r −{−}r)∗ is the set of sequences of length r strings of stars and dashes
that have s total stars and at least one star per string. This will let us specify which variables in
terms of F are unset and therefore potential contributing variables to D(fρ).

We first describe the map. Given F , we use some canonical ordering of the terms of F . The map
is based on the canonical conversion of F |ρ to a decision tree which will clearly compute f |ρ. Let
π denote the left-most (partial) path in this tree that has length at least s. This path corresponds
to a partial assignment that we also denote by π. By construction, this canonical decision tree is
produced by taking the first term of F |ρ which is the first term of F that is not assigned to 0 by
ρ and building a tree that queries all variables in that term that are assigned stars by ρ. Let σ1

be the partial assignment to those variables that satisfies that first term and π1 be the portion of
π assigning values to those variables. Then by construction, the sub-tree below π1 is the canonical
decision tree for (F |ρ)|π1

= F |ρπ1
where the concatenation of two partial assignments on disjoint

sets of variables is the partial assignment that assigns values for both of them. This sub-tree is
produced beginning with the first term of F |ρπ1

that is not set to 0. Let σ2 be the assignment
that saitsfies this second term, π2 be the corresponding portion of π and repeat until all of π is
exhausted. (Note that since we cut π at length s, the last σk and corresponding πk might not assign
values to all unset variables.) A picture of the tree and the corresponding part of the construction
is shown in Figure 9.1.

The first component of the map of ρ is ρ′ = ρσ1 · · · σk. In total σ1 · · · σk gives values to the
same s variables that π does so ρ′ ∈ Rℓ−s

n . The second component of the map will be a sequence

3

σ

σ

σ

1

π

π

π

π

1

1

2

2

3

σ
3

k

k

s

1

1

1

Figure 9.1: Canonical decision tree for F |ρ.

of k strings of length r, each of which has a ∗ in the positions of the unset variables contributing
to the σi and a − in the other positions. A ∗ will appear a total of s times in this sequence so the
result is in stars(r, s). The last component is a binary string of length s that says how σ1 · · · σk

differs from π = π1 · · · πk.
Observe that |stars(r, s)| ≤ 2s−1rs. This follows easily by encoding an element of stars(r, s) by

listing the position of each ∗ within its string of length r and by an additional bit for each ∗ (but
the last) that will be 1 if the next ∗ is in the same term and 0 otherwise. (Sharper calculations can
show that |stars(r, s) ≤ (r/ ln 2)s but we will not use them.) Therefore, if we can show that the
map is 1-1 then the probability that D(fρ) ≥ s is at most

|Rℓ−s
n × stars(r, s) × {0, 1}s

|Rℓ
n|

≤
|Rℓ−s

n | · 2s−1rs · 2s

|Rℓ
n|

=

(

n
ℓ−s

)

2n−ℓ+s · 2s−1rs · 2s

(

n
ℓ

)

2n−ℓ

<

(

n
ℓ−s

)

· (8r)s
(

n
ℓ

)

=
(n − ℓ)!ℓ!

(n − ℓ + s)!(ℓ − s)!
· (8r)s

≤
ℓs

(n − ℓ)s
· (8r)s,

which is the bound we require.
It remains to show that the map is 1-1 given F . To do so, we show how given access to F ,

ρ′ ∈ Rℓ
n and the elements of stars(r, s) and {0, 1}s we can reconstruct ρ uniquely.

4

Since ρ′ = ρσ1 · · · σk, the first term of F not set to 0 by ρ′ will in fact be the first term of F not
set to 0 by ρ. This is because σ1 will force the first term not set to 0 by ρ to have value 1 (unless
k = 1 and π has been truncated to be shorter than the number of unset variables, in which case
the term certainly won’t set it to 0). Knowledge of F has identified the term; now the first string
in the image in stars(r, s) will identify the variables in that term that are unset by ρ and therefore
identify which portion of ρ′ is σ1. The initial segment of |σ1| bits in the length s binary string
of the third component will allow us to identify π1. We can now change ρ′ to ρ′′ = ρπ1σ2 · · · σk.
Since the sub-tree below π1 is the canonical tree for F |ρπ1

we are in the same position to do the
analogous determination in the next round. In the i-th round we find the first term of F not set
to 0 by ρπ1 · · · πi−1σi · · · σk. Then we use the i-th string in stars(r, s) to identify σi and the next
|σi| bits of the third component of the map to identify πi. Eventually we find all σi, πi, and then
we can determine ρ itself. Therefore the map is 1-1 as required and the lemma follows.

To prove the lower bound we will apply this switching lemma to all nodes in the circuit and
use the probabilistic method to argue that there exists a restriction so that the output of a small
circuit of small depth is smaller than suffices to compute parity. We complete the argument in our
next class.

5

