
Lecture 1

Formula Size, Circuit Depth, and Parallel
Complexity Classes

April 22, 2008
Lecturer: Paul Beame

Notes: Punyashloka Biswal

Although by Shannon’s Theorem almost all functions have exponential circuit size, it is a very
difficult to find explicit functions that have large circuit complexity. Although we know by Kannan’s
Theorem that there are functions in Σp

2 ∩Πp
2 that have circuit size ω(nk) for any integer k, the best

size lower bound known for any explicit function is 5n−o(n). However, we can show stronger lower
bounds for a more restricted class of circuits.

Definition 1.1 (Formulæ) A formula over a basis Ω is a Boolean circuit over Ω that is a tree.
The formula size of f , denoted LΩ(f), is the minimum number of leaves required to compute f in
a formula over Ω. When Ω equals {∧,∨,¬}, the De Morgan basis, we just write L(f).

Theorem 1.2 (Shannon’s Theorem for Formulas) For any finite basis Ω and integer S ≥ n
there is a constant c > 0 such that there are at most cS functions f : {0, 1}n → {0, 1} that have
formula size ≤ S. In particular, for any ε > 0, finite basis Ω, and sufficiently large n, at least a
1− ε fraction of functions f : {0, 1}n → {0, 1} have LΩ(f) is Ω(2n).

Proof As in the corresponding proof for circuits, we count the number of functions represented
by formulas of size at most S. Since a chain of unary gates can be replaced by a single

We can remove chains of unary gates by extending the finite basis Ω to some Ω′ so htat any
formula must have ≤ S internal nodes. The tree structure of the formula can be represented by
≤ S pairs of nested balanced parentheses, and there are < 22S such strings. Each node receives
one of |Ω| labels, for a total of ≤ (4|Ω′|)S possible functions. But the total number of functions
f : {0, 1}n → {0, 1} is 22n

, so we must have (4|Ω′|)S ≥ ε22n
, and the claim follows.

Definition 1.3 (Restrictions, subfunctions) A restriction or partial assignment ρ is a partial
function that maps [n] → {0, 1}, or equivalently, a total function ρ : [n] → {0, 1, ∗}. We define
unset(ρ) = ρ−1(∗).

Given a function f : {0, 1}n → {1, 0} and a restriction ρ, the ρ-restriction of f , denoted f |ρ,
is a function mapping {0, 1}unset(ρ) → {0, 1}, which for y ∈ {0, 1}unset(ρ) is given by f |ρ(y) = f(x)
where

xi =

{
yi i ∈ unset(ρ)
ρ(i) ρ(i) ∈ {0, 1}.

1

Given B ⊆ [n], a sub-function of f on B is a function f |ρ for some ρ such that unset(ρ) = B. The
set of all subfunctions of f on B is denoted by SUB(f,B).

Theorem 1.4 (Nečiporuk) Let Ω be any finite basis and B1, . . . , Bk be a partition of [n]. Then
there is a constant c > 0 such that for any function f : {0, 1}n → {0, 1},

LΩ(f) ≥
k∑

i=1

logc|SUB(f,Bi)|.

Proof Let Ω′ be the set of all subfunctions of elements of Ω (so we don’t need constant inputs
any more). Let Li be the number of leaves of F that are labelled by variables xj such that j ∈ Bi.
LΩ(F) ≥

∑k
i=1 Li.

Consider restrictions ρ such that unset(ρ) = Bi. We want to count the leaves of a formula
F for f . Observe that any restriction f |ρ has a formula F |ρ over Ω′ that can be obtained by
modifying F , propagating the inputs set by ρ. Clearly, F |ρ has at most Li leaves. We conclude
that LΩ′(g) ≤ Li for each g ∈ SUB(f,Bi). Then, by Theorem 1.2, we must have |SUB(f,Bi)| ≤ cLi

so Li ≥ logc |SUB(f,Bi)| and therefore L(f) ≥
∑k

i=1 Li =
∑k

i=1 logc|SUB(f,Bi)|.

Example 1.5 (Element distinctness) We apply this to a natural example. Define the element
distinctness function ED : {0, 1}n → {0, 1} as follows. Write n = 2N log2 N , and let the input
string represent a sequence of integers (x1, . . . , xN) ∈ [N2]N . Then ED(x1, . . . , xn) = 1 iff all the
xi’s are distinct.

Take Bi to be the bit positions of xi, and let ρ be a restriction such that unset(ρ) = Bi. If ρ
assigns equal values to some pair of variables xj , xk for j 6= k, then f |ρ is identically zero. On the
other hand, suppose ρ assigns distinct values to all variables xj for j 6= i and let T ⊂ [N2] be the
set of these n − 1 values. Then f |ρ is the function that is 1 iff its input does not lie in T . There
are

(
N2

N−1

)
choices for T , so we have

|SUB(ED,Bi)| ≥
(

N2

N − 1

)
+ 1 ≥

(
N2

N − 1

)N−1

> NN−1.

Then, by Nečiporuk’s theorem, we have that LΩ(ED) is Ω(N2 log N) which is Ω(n2/ log n).

This lower bound is essentially the largest possible using Nečiporuk’s Theorem.

Formula lower bounds over the De Morgan basis

Necčiporuk’s Theorem is the strongest known explicit lower bound for formula size over a general
basis (up to the constant factor). There are stronger lower bounds known over the De Morgan
basis:

Krapchenko showed that L(Parityn) and L(Majorityn) are both Ω(n2). The proof of this
uses so-called “influence” arguments to prove this result, namely that there are larger sets of inputs
A ⊂ f−1(0) and B ⊆ f−1(1) such that that each input in A differs from many inputs in B in precisely
one bit. This is tight since x ⊕ y can be represented as a De Morgan formula (¬x ∧ y) ∨ (x ∧ ¬y)

2

and simulating a balanced tree of ⊕ gates using a De Morgan formula will have 4log2 n = n2 binary
gates.

Using a different technique based on the fact that random restrictions are effective at simplifying
De Morgan formulas, Subotovskaya showed an Ω(n3/2) lower bound on computing Parityn.

Andre’ev combined the parity function with the function g : {0, 1}n+log2 n → {0, 1} given by
gx1...xn(xn+1, . . . , xn+log2 n) where gx1...xn : {0, 1}log2 n → {0, 1} is the function whose truth table
has xi as its i-th entry. He obtained obtain an explicit function f for which he showed an even
larger lower bound, Ω(n5/2−ε). Andre’ev’s function f is defined on (1 + log2 n)n bits. We can
denote these as xi,j for 0 ≤ i ≤ log2 n and 1 ≤ j ≤ n.

f(x) = gx0,1...x0,n(⊕n
j=1x1,j , . . . ,⊕n

j=1xlog2 n,j).

Using CNF or DNF, any function on log2 n bits can be computed by De Morgan formulas with
O(n log n) bits. Therefore, using the above O(n2) size parity formulas so Andre’ev’s function has
De Morgan formula size O(n3 log n). Finally, Goldmann-Hast̊ad showed that Andre’ev’s function
requires Ω(n3−ε) size De Morgan formulas nearly matching the best algorithm. This is currently
the best lower bound in any complete basis for any explicit function.

Formula size versus depth

Theorem 1.6 (Spira) Let Ω be a finite universal basis and c > 1 be its maximum fan-in. Let
f : {0, 1}n → {0, 1} be a function. We have

1. depthΩ(f) ≥ logc LΩ(f), and

2. if c ≤ 2, then depthΩ(f) ≤ 1 + 2 log3/2 LΩ(f).

Proof Take a minimum-depth circuit for f and convert it into a formula by repeating subgraphs as
necessary to make its fan-out 1; this operation does not alter the depth and gives a size ≤ cdepthΩ(f).
The minimum-size formula is at most this big, so the first part follows.

For the second part, we will need the following claim:
Claim: [13–2

3 Lemma] Any tree of maximum degree ≤ 2 has a node whose subtree has between
1/3 and 2/3 fraction of the total number of leaves.
Proof Let the weight of a node be the number of leaves in the subtree rooted at that node, and
let N be the number of leaves in the entire tree. Consider the following algorithm:

Walk down from the root. If the current node has weight ≤ 2N/3, output it. Otherwise,
proceed to the child of larger weight and repeat.

This algorithm terminates, because the weights decrease from N to 1 along the path followed by
the algorithm. Let v be the node output by the algorithm, and u be its parent. By construction,
we know that v has weight ≤ 2N/3 and u has weight > 2N/3. But we also know that v is the child
of larger weight, so its weight is at least half of the weight of u. Therefore, the weight of u must lie
in (1/3, 2/3].

We will prove the second part for the De Morgan basis via a recursive construction; the argument
for any other universal basis is similar. Let F be a minimum-size formula for f , v be the 1

3–2
3 split

node of F and G be the formula rooted at v. If we write F0 and F1 for the formulæ obtained by

3

replacing G with the constants 0 and 1, respectively, we get an equivalent smaller-depth formula
for f , viz.

f = (G ∧ F1) ∨ (¬G ∧ F0).

Now G, F0, F1 each have size at most 2L(f)/3, so we can perform this operation recursively on each
of them (viewing each sub-formula as a function). There will be log3/2 L(f) levels of recursion until
these are reduced to constants or variables. The subcircuit above has depth 2 in ∧ and ∨ gates per
level of recursion. By pushing negations down to the leaves, we get a formula of the desired depth
1 + 2 log3/2 L(f).

Corollary 1.7 A function f : {0, 1}n → {0, 1} has formulæ of size polynomial in n if and only if
it has circuits of depth O(log n).

Definition 1.8 (Parallel circuit complexity classes) Let Ω and Ω̃ be the De Morgan basis
with binary and arbitrary fan-in ∧ and ∨ gates, respectively.

• NCk is defined as the set of all functions f : {0, 1}∗ → {0, 1}∗ such that there exists a circuit
family {Cn}n over Ω computing f and satisfying size(Cn) is nO(1) and depth(Cn) is O(log n)k.

• ACk is the analogous class with basis Ω̃.

• NC =
⋃

k NCk.

Note that NC0 is the set of functions for which each output bit depends on a constant number
of input bits. Also NC1 is the set of functions with polynomial formula size.

We can also define uniform versions of these classes by requiring that the circuit families be
efficiently constructible. One natural uniformity notion is log-space constructibility, namely that
the function mapping 1n 7→ 〈Cn〉 for each n is computable in O(log n) space by a Turing machine.

The terminology NC stands for “Nick’s Class” after Nick Pippenger. It can be expressed as SIZE-
DEPTH(nO(1), logO(1) n), functions computable by polynomial-time, polylog depth circuits, and is
the non-uniform analogue of TIME-SPACE(nO(1), logO(1) n), functions computable of polynomial-
time, polylog space Turing machines. The latter class was studied by Steve Cook (who called
it PLOPS) which Pippenger called “Steve’s Class”. Steve Cook returned the favor for the class
Pippenger was studying. AC stands for “Alternating Circuits” since the depth of a circuit is the
number of alternations between ∧ and ∨ gates.

NC can be thought of as the set of problems with efficient superfast parallel algorithms. It is
unknown whether NP ⊆ NC1, and whether uniform-NC = P.

Theorem 1.9 ACk ⊆ NCk+1.

Proof A polynomial-fan-in ∨ or ∧ gate can be implemented as an O(log n)-depth binary tree of
binary ∨ or ∧ gates. This replacement blows up the circuit depth by at most O(log n), so we get
an NCk+1 circuit from an ACk circuit.

Corollary 1.10 NC =
⋃

k NCk =
⋃

k ACk.

4

Theorem 1.11 NL ⊆ AC1 ⊆ NC2.

Proof We shall show that the NL-complete problem PATH lies in AC1 (and therefore NC2, by
Theorem 1.9. To do this, let A be the adjacency matrix of the graph G, and observe that there
is a path from s to t if and only if the (s, t) entry of (I ∨ A)m is 1 for any m ≥ n (here the
exponentiation refers to repeated application of Boolean ∧-∨ matrix multiply; that is, C = A�B
iff cij = ∨n

k=1(aik ∧ bkj). For m = 2dlog2 ne, we can compute this quantity by dlog2 ne rounds of
repeated squaring.

Note that in the above proof, we used unbounded fan-in ∨ gates and binary ∧ gates. Define SACk

(semi-unbounded ACk) as the class of problems that have polynomial sized circuits of O(logk n)
depth. Surprisingly, it can be shown that SACk is closed under complement. In particular, this
means that we can equivalently define SACk using a basis of unbounded fan-in ∧ gates and binary ∨
gates. It turns out that the context-free language recognition problem ACFG = {〈G, w〉 | G ⇒∗ w}
can be computed in SAC1 and the log-space uniform version of SAC1 can be shown to be equivalent
to LOGCFL, the set of functions log-space reducible to ACFG.

Theorem 1.12 uniform-NC1 ⊆ L.

Proof The basic idea of the proof is to evaluate circuit Cn of depth O(log n) on input x using
a depth-first search, evaluating the left sub-tree and then the right if needed. The O(log n) space
algorithm will use the log-space circuit constructor to generate the properties of each gate as needed.
Since the tree is binary, the depth-first search will only need to maintain the sequence of left and
right moves down the tree (i.e. the node name) as well as the current value of the gate being
evaluated. This can be done using O(log n) storage.

5

