
Lecture 4

Complexity classes of functions, #P, and the

Permanent

April 10, 2008

Lecturer: Paul Beame

Notes:

We will now define some complexity classes of functions on input strings that output numerical
values of strings rather than decision problems where the output is a single bit.

Definition 4.1 The class FP is the set of all functions f : {0, 1}∗ → {0, 1}∗ (or alternatively,
f : {0, 1}∗ → N) that are computable by a TM with a separate output tape in polynomial time.
The class FNP is the analogous class for nondeterministic polynomial time where the requirement
for a nondeterministic TM to compute a function is that on a given input x the content of the
output tape is f(x) in all accepting computations.

Among the algorithmic problems representable by such functions are “counting problems” re-
lated to common decision problems. For example,

Definition 4.2 Let #3-SAT be the problem that takes as input the encoding 〈ϕ〉 of a 3-CNF
formula ϕ and outputs the number of satisfying assignments of ϕ.

More generally, given an NP language A defined by x ∈ A ⇔ ∃y ∈ {0, 1}q(|x|)R(x, y) for a natural
polynomial-time computable predicate R associated with A, #A will be the function mapping x
to #{y ∈ {0, 1}q(|x|) | R(x, y)}. Note that this is not a precisely specified since there may be many
different choices of R that will work for the same language A. For many natural problems, however,
the right choice of the relation R will be obvious.

Definition 4.3 Given a complexity class C, we define the complexity class #C to be the set
of all functions f : {0, 1}∗ → N such that there is an R ∈ C and a polynomial q such that
f(x) = #{y ∈ {0, 1}q(|x|) | (x, y) ∈ R}.

In particular, #P is the set of all functions f : {0, 1}∗ → N such that there is an R ∈ P and a
polynomial q such that f(x) = #{y ∈ {0, 1}q(|x|) | (x, y) ∈ R}.

4.1 Function classes and oracles

Let us consider the use of oracle TMs in the context of function classes. For a language A, let FP
A

be the set of functions f : {0, 1}∗ → {0, 1}∗ that can be computed in polynomial time by an oracle
TM M? that has A as an oracle.

1

Similarly, we can define oracle TMs M? that allow functions as oracles rather than sets. In this
case, rather than receiving the answer from the oracle by entering one of two states, the machine
can receive a binary encoded version of the oracle answer on an oracle answer tape. Thus for
functions f : {0, 1}∗ → {0, 1}∗ or f : {0, 1}∗ → N and a complexity class C for which it makes sense
to define oracle versions, we can define Cf . For a complexity class FC′ of functions we can define
CFC′

=
⋃

f∈FC′ C
f .

Note that although #P is a class of functions it is very closely related to the unbounded-error
class PP. In fact, their closure under polynomial-time Turing reductions is the same.

Theorem 4.4 PPP = P#P.

Proof There are two directions. One is easy. For L ∈ PPP there is some A ∈ PP such that L ∈ PA.
Furthermore there is some polynomial-time Turing machine M and polynomial p such that x ∈ A
if and only if #{r ∈ {0, 1}p(|x|) | M(x, r) = 1} > 2p(|x|) − 1. The P#P algorithm will simply replace
each call A to a call to the function f ∈ #P that computes #{r ∈ {0, 1}p(|x|) | M(x, r) = 1} and
then compares f(x) to 2p(|x|) − 1.

For the other direction, one has to use a polynomial number of calls to an appropriate PP oracle
to replace a call to the #P oracle f that on input x returns f(x) = #{y ∈ {0, 1}m | M(x, y) = 1}
where m = q(|X|) for some polynomial-time computable M . We can denote M ′ be the TM that on
input (z, y) where y, z ∈ {0, 1}m accepts if y ≺ z in the lexicographic order. Define M that on input
(x, z) flips m + 1 bits by where b ∈ {0, 1}. If b = 0 then run M(x, y). If b = 1 then run M ′(z, y).
The probability of acceptance of M ′′ is (Nz + f(x))/2m+1 where z is the binary representation of
integer Nz ∈ {0, . . . , 2m − 1}. If this is strictly larger than 1/2 then we know that f(x) > 2m −Nz.
We can query this language with m + 1 different values of z to do a binary search for the value of
f(z).

Definition 4.5 A function f is #P-complete iff

1. f ∈ #P.

2. For all g ∈ #P we have g ∈ FP
f .

As 3-SAT is NP-complete, #3-SAT is #P-complete:

Theorem 4.6 #3-SAT is #P-complete.

Proof The reduction produced by the Cook-Levin tableau is “parsimonious”, in that it preserves
the number of solutions. More precisely, in circuit form there is precisely one satisfying assignment
for the circuit for each NP witness y. Moreover, the conversion of the circuit to 3-SAT enforces
precisely one satisfying assignment for each of the extension variables associated with each gate.

Since the standard reductions are frequently parsimonious, they can be used to prove #P-
completeness of many counting problems relating to NP-complete problems. In some instances
they are not parsimonious but can be made parsimonious. For example we have the following.

2

Theorem 4.7 #HAM -CY CLE is #P-complete.

The set of #P-complete problems is not restricted to the counting versions of NP-complete
problems, however; interestingly, problems in P can have #P-complete counting problems as well.

Consider #CY CLE, the problem of finding the number of directed simple cycles in a graph G.
(The corresponding problem CY CLE is in P).

Theorem 4.8 #CY CLE is #P-complete.

Proof We reduce from #HAM -CY CLE. We will map the input graph G for #HAM -CY CLE
to a graph G′ for #CY CLE. Say G has n vertices. G′ will have a copy u′ of each vertex u ∈ V (G),
and for each edge (u, v) ∈ E(G) the gadget in Figure 4.1 will be added between u′ and v′ in G′.
This gadget consists of N = n ⌈log2 n⌉ + 1 layers of pairs of vertices, connected to u′ and v′ and
connected by 4N edges within. The number of paths from u′ to v′ in G′ is 2N ≥ 2nn. Each simple
cycle of length ℓ in G yields (2N)ℓ = 2Nℓ simple cycles in G′. If G has k Hamiltonian cycles, there
will be k2Nn corresponding simple cycles in G′. Now G has feweer than nn simple cycles of any
length, in particular of length ≤ n − 1. The total number of simple cycles in G′ corresponding to
these cycles of length ≤ n − 1 is < nn2N(n−1) = 2Nn−1 since nn ≤ 2N−1. Therefore we compute
#HAM -CY CLE(G) =

⌊

#CY CLE(G′)/2Nn
⌋

.

u v

u’ v’

N=n log2 n +1 layers

Figure 4.1: Edge replacement in #HAM -CY CLE to #CY CLE reduction.

The following corollary is left as an exercise:

Corollary 4.9 #2-SAT is #P-complete.

3

4.2 Determinant and Permanent

Some interesting problems in matrix algebra Given an n × n matrix A = (aij), the determinant of
A is

det(A) =
∑

σ∈Sn

(−1)sgn(σ)
n

∏

i=1

aiσ(i),

where Sn is the set of permutations of [n] = {1, . . . , n} and sgn(σ) is the is the number of transpo-
sitions required to produce σ modulo 2. This problem is in FP.

The (−1)sgn(σ) is apparently a complicating factor in the definition of det(A), but if we remove
it we will see that the problem actually becomes harder. This is called the permanent of matrix A:

perm(A) =
∑

σ∈Sn

n
∏

i=1

aiσ(i).

Let PERM be the problem of computing the permanent of a matrix. and 0-1PERM the
problem in the case that the matrix has binary entries. We can view the matrix A as the weighted
adjacency matrix of a bipartite graph on [n]× [n]. Each σ ∈ Sn corresponds to a perfect matching
in this graph. If we view the weight of a matching as the product of the weights of its edges the
permanent is the total weight of all matchings in the graph.

In particular a 0-1 matrix A corresponds to an unweighted bipartite graph G for which A
is the adjacency matrix, and perm(A) represents the number of perfect matchings on G. Let
#BIPARTITE-MATCHING be the problem of counting all such matchings. Therefore 0-
1PERM = #BIPARTITE-MATCHING ∈ #P.

Alternatively, an n × n matrix A can be viewed as a weighted adjacency matrix of a directed
graph G on n vertices (with possibly self-loops). Now each permutation σ ∈ Sn can be decomposed

into a union of disjoint cycles. For example, if σ =

(

1 2 3 4 5 6
3 4 5 2 1 6

)

∈ S6 then σ can also

be written in cycle form as (1 3 5)(2 4)(6) where the notation implies that each number in the
group maps to the next and the last maps to the first. These cycles cover all of the points [n]. For
a directed graph G, a cycle-cover of G is a union of simple cycles of G that contains each vertex
precisely once. In particular the edges corresponding to a term

∏n
i=1 aiσ(i) is the permanent of

A corresponds to the product of the weights of edges in the directed graph G corresponding to
the cycle-cover corresponding to σ, which we can view as the weight of the cycle-cover. Therefore
perm(A) is the total weight of all cycle-covers of G.

For a weighted, directed graph G, define PERM(G) as the total weight of all cycle-covers of
G, where the weight of a cycle-cover is the product of the weights of all its edges. Thus, for an
unweighted graph G, PERM(G) is the number of cycle-covers of G. The hardness of 0-1PERM
is established by showing that the problem of finding the number of cycle-covers of G is hard.

Theorem 4.10 (Valiant) 0-1PERM is #P-complete.

Proof We will reduce #3-SAT to 0-1PERM in two steps. Given any 3-SAT formula φ, in the
first step, we will create a weighted directed graph G′ (with small weights) such that

PERM(G′) = 43m#(ϕ)

4

where m is the number of clauses in ϕ. In second step, we will convert G′ to an unweighted graph
G such that PERM(G′) = PERM(G) mod M , where M will only have polynomially many bits.

First, we will construct G′ from φ. The construction will be via gadgets. The VARIABLE
gadget is shown in Figure 4.2. All the edges have unit weights. Notice that it contains one dotted
edge for every occurrence of the variable in φ. Each dotted edge will be replaced by a subgraph
which will be described later. Any cycle-cover either contains all dotted edges of positive occurrence
(and all self-loops of negative occurrence) or vice versa.

true

false

#arrows =
#positive occurances

#arrows =
#negative occurances

Figure 4.2: The VARIABLE gadget

The CLAUSE gadget is shown in Figure 4.2. It contains three dotted edges corresponding to
three variables that occur in that clause. All the edges have unit weights. This gadget has the
property that in any cycle-cover, at least one of the dotted edges is not used.

Figure 4.3: The CLAUSE gadget

5

Now, given any clause C and any variable x contained in it, there is a dotted edge (u, u′) in the
CLAUSE gadget for the variable and a dotted edge (v, v′) in the VARIABLE gadget for the clause.
These two dotted edges are replaced by an XOR gadget shown in Figure 4.2.

v’

u

a d

u’

v

c

3

2
−1

−1

b

−1

Figure 4.4: The CLAUSE gadget

The XOR gadget has the property that the total contribution of all cycle-covers using none or
both of (u, u′) and (v, v′) is 0. For cycle-covers using exactly one of the two, the gadget contributes
a factor of 4. To see this, lets consider all possibilities:

1. None of the external edges are present: The cycle-covers are [a c b d], [a b][c d], [a d b][c] and
[a d c b]. The net contribution is (-2) + 6+ (-1) + (-3) = 0.

2. (u, a) and (a, v′) are present: The cycle-covers are [b c d], [b d c], [c d][b] and [c][b d]. The
net contribution is (2) + (3)+ (-6) + (1) = 0.

3. (v, d) and (d, u′) are present: The cycle-covers are [a b][c] and [a c b]. The net contribution
is 1 + (-1) = 0.

4. All four external edges are present: The cycle-covers are [b c] and [b][c]. The net contribution
is 1 + (-1) = 0.

5. (v, d) and (a, v′) are present: The cycle-covers are [d b a][c] and [d c b a]. The net contribution
is 1 + 3 = 4.

6. (u, a) and (d, v′) are present: The cycle-covers are [a d][b c], [a d][b][c], [a b d][c], [a c d][b],
[a b c d] and [a c b d]. The net contribution is (-1) + 1 + 1 + 2 + 2 + (-1) = 4.

There are 3m XOR gadgets. As a result, every satisfying assignment of truth values to φ will
contribute 43m to the cycle-cover and every other assignment will contribute 0. Hence,

PERM(G′) = 43m#(φ)

Now, we will convert G′ to an unweighted graph G. Observe that PERM(G′) ≤ 43m2n ≤ 26m+n.
Let N = 6m + n and M = 2N + 1. Replace the weighted edges in G′ with a set of unweighted

6

edges as shown in Figure 4.2. For weights 2 and 3, the conversion does not affect the total weight
of cycle-covers. For weight -1, the conversion blows up the total weight by 2N ≡ −1(modM). As a
result, if G is the resulting unweighted graph, PERM(G′) = PERM(G) mod M .

−1

3

2

N blocks

Figure 4.5: The VARIABLE gadget

Thus, we have shown a reduction of #3-SAT to 0-1PERM. This proves the theorem.

7

