
Lecture 3

Circuit Size versus Uniform Complexity

April 8, 2008
Lecturer: Paul Beame

Notes:

The Karp-Lipton theorem gives a conditional result about the relationship between circuit
complexity (non-uniform complexity) and uniform complexity. What unconditional properties do
we know about circuit complexity and about its relationship to uniform complexity?

Let Bn = {f : {0, 1}n → {0, 1}}, that is, the set of all Boolean functions on n bits. Observe
that |Bn| = 22n

.

Theorem 3.1 (Shannon) “Most” Boolean functions f : {0, 1}n → {0, 1}, have circuit complexity
size(f) ≥ 2n

n − φ(n) where φ(n) is o(2n

n). More precisely, for any ε > 0 and any basis Ω ⊆ B1 ∪ B2

there is a function φε : N → N such that at least a (1− ε) fraction of functions f have sizeΩ(f) ≥
2n

n − φε(n).

Proof The proof is a by a counting argument. We will show that the number of circuits of size
much smaller than 2n

n is only a negligible fraction of |Bn|, proving the claim.
We first compute the number of circuits of with S ≥ n+2 gates over n inputs with Ω = {¬,∧,∨}.

What does it take to specify a given circuit? A gate labeled i in the circuit is defined by the labels
of its two inputs, j and k (j = k for unary gates), and the operation g the gate performs. The
input labels j and k can be any of the S gates or the n inputs or the two constants, 0 and 1. The
operation g can be any one of the three Boolean operations in the basis {¬,∧,∨}. Therefore there
are at most (S + n + 2)23 possibilities for each gate. The circuit description also needs to specify
the output gate, so any circuit with at most S gates can be specified by a description of length at
most (S + n+ 2)2S3SS (where we have added dummy gates if the circuit has fewer than S gates).

Note, however, that such descriptions compute the same function under each of the S! ways of
naming the gates. Since S! ≥ (S/e)S for any integer S, the number of different functions computed
by circuits of size S is at most

(S + n+ 2)2S3SS
S!

≤ (S + n+ 2)2S(3e)S

SS

≤ (2S)2S(3e)SS
SS

since S ≥ n+ 2

≤ (12eS)S+1

Observe that for general Ω ⊆ B1 ∪ B2, we can assume that |Ω| ≤ 16 since constant functions and
the unary identity function are not needed and we can replace 3 in the above calculation by 16.
Therefore the number of such circuits is at most (64eS)S+1. If (64eS)S+1 ≤ ε22n

then at least

1

an (1 − ε) fraction of functions in Bn have at size at least S. This holds if (S + 1) log2(64eS) ≤
2n− log2(1/ε). Now for S ≤ 2n/n, we have log2(64eS) ≤ n+8− log2 n and so (S+1) log2(64eS) ≤
(S + 1)(n + 8 − log2 n). Therefore if S + 1 ≤ 2n

n+8 then (S + 1) log2(64eS) ≤ 2n − 2n log2 n
n+8) ≤

2n − log2(1/ε) for n sufficiently large as a function of 1/ε. The claim follows by observing that
1

n+8 = 1
n −

8
n(n+8) which is 1

n −Θ(1
n2).

Theorem 3.2 (Lupanov) Every Boolean function f : {0, 1}n → {0, 1} has size(f) ≤ 2n

n + ψ(n)
where ψ(n) is o(2n

n).

Proof Proof of this part is left as an exercise. Note that a Boolean function f over n variables
can be easily computed in using its canonical DNF or CNF representation and so size(f) ≤ n2n+1.
Bringing it down close to 2n

n is a bit trickier. This gives a fairly tight bound on the size needed to
compute most Boolean functions over n variables.

As a corollary, we get a circuit size hierarchy theorem which is even stronger than the time and
space hierarchies we saw earlier; circuits can compute many more functions even when their size is
tripled.

Corollary 3.3 (Circuit-size Hierarchy). For any S, S′ : N → N, if n ≤ 3S(n) ≤ S′(n) < 2n/n,
then SIZE(S(n)) (SIZE(S′(n)).

Proof Let m = m(n) < n be the largest integer such that S′(n) ≥ 2m/m + ψ(m) where ψ(m) is
defined as in Theorem 3.2 and is o(2m/m). Since 2m+1/(m + 1) + ψ(m + 1) > S′(n) ≥ 3S(n), we
have S(n) < 1

3(2m+1

m+1 + ψ(m + 1)) = 2
3(2m

m+1 + ψ(m+1)
2) = 2

3(2m

m − 2m

m(m+1) + ψ(m+1)
2) < 2m

m − φ(m)
where φ(m) is defined as in Theorem 3.1 for ε = 1/2. Consider the set F of all Boolean functions
on n variables that depend only on the first m bits of their inputs. By Theorem 3.2, all functions
in F can be computed by circuits of size 2m/m + ψ(m) ≤ S′(n) and are therefore in SIZE(S′(n)).
On the other hand, at least 1/2 of the functions in F cannot be computed by circuits of size
2m/m− φ(m) > S(n) and are therefore not in SIZE(S(n)). (Note that with the weaker bound size
upper bound based on DNF formulas of m2m+1 for m-input functions, a similar argument would
yield a separation if S′(n) is ω(S(n) log2 S(n)).)

We now consider how these circuit size classes relate to uniform complexity classes. The Cook-
Levin Theorem shows how to simulate any algorithm running TIME(T (n)) on inputs of length n
by a circuit of size O(T 2(n)) with a constant number of circuit elements for each entry of the
T (n)× T (n) tableau for the time T (n) computation. The following Theorem, whose proof we just
sketch, shows that a more efficient simulation is possible.

Theorem 3.4 (Fischer-Pippenger) If T (n) ≥ n then TIME(T (n)) ⊆
⋃
c SIZE(cT (n) log2 T (n)).

Proof The basic idea of the proof is a variant on the Cook-Levin tableau construction. Observe
that the only calculations that take place in each row of this tableau involve the constant number
of circuit elements that surround the read/write head. The contents of other entries can just be
passed along directly to the next row. Unfortunately, in a typical Turing machine running on inputs
of size n the position of the read/write head at a fixed time step can vary based on the input string.
We say that a multitape Turing machine is oblivious if and only if the positions of its read/write
heads only depends on the time step but not on its actual input.

2

It turns out that Hennie and Stearns [1] showed that there is a simulation of multitape TMs
running in time O(T (n)) by 2-tape oblivious TMs running in time O(T (n) log T (n)). The circuit
we need to construct is just the tabeau circuit for this 2-tape TM. This circuit will have two rows
for each time step and only a constant number of circuit elements per row (after the first row).
The total number of gates will be O(T (N) log T (n)).

Theorem 3.5 (Kannan) For all k, Σp
2 ∩Πp

2 6⊆ SIZE(nk).

Proof We know that SIZE(nk+1) 6⊆ SIZE(nk) by the circuit hierarchy theorem. To prove this
theorem we will give a specific example of a language with circuit size at least nk+1 that is in
Σp

2 ∩Πp
2 \ SIZE(nk).

For each n, let Cn be the lexicographically smallest circuit on n inputs such that size(Cn) ≥ nk+1

and Cn is minimal; i.e., Cn is not equivalent to any smaller circuit. (For lexicographic ordering
on circuit encodings, we’ll use � and we assume that if size(C) ≤ size(C ′) then C � C ′.) Let
{Cn}∞n=0 be the corresponding circuit family and let A be the language decided by this family.

By our choice of Cn, A /∈ SIZE(nk). Also, by the circuit hierarchy theorem, size(Cn) is a
polynomial ≤ 3nk+1 and the size of the encoding |〈Cn〉| ≤ nk+3, say. Note that the factor of 3
is necessary because there may not be a circuit of size exactly nk+1 that computes A, but there
must be one of size not too much larger than this by the circuit hierarchy theorem. We first show
a weaker reswlt.

Claim: A ∈ Σp
4.

The basic idea of the claim is that we can express the conditions using quantifiers. We define A
by guessing the encoding 〈Cn〉 for inputs of length n as a string and then verifying that Cn satisfies:

• size(Cn) ≥ nk+1.

• Cn is minimal.

• For all minimal circuits D on n inputs of size at least nk+1 (and at most 3nk+1), Cn � D.

Recall from Lecture 1 that the property of a circuit being minimal is a Πp
2 property. That is, a

circuit C on n inputs (of size at most 3nk+1 say) is minimal if and only if

∀〈C ′〉 ∈ {0, 1}nk+3∃y ∈ {0, 1}n((size(C ′) ≥ size(C)) ∨ (C ′(y) 6= C(y))).

The third condition for a fixed D of size between nk+1 and 3nk+1 is equivalent to saying that D is
not minimal or Cn � D, i.e., . This is a Πp

2 condition in 〈D〉 and 〈Cn〉:

∃〈D′〉 ∈ {0, 1}nk+3∀z ∈ {0, 1}n [((size(D′) ≤ size(D)) ∧ (D′(z) = D(z))) ∨ (Cn � D)].

Now, we can use the same variable D to represent the candidate circuit in the third condition and
in place of the C ′ in the minimality condition for Cn. Therefore x ∈ A if and only if

∃〈C〉 ∈ {0, 1}|x|k+3 ∀〈D〉 ∈ {0, 1}|x|k+3 ∃〈D′〉 ∈ {0, 1}|x|k+3 ∃y ∈ {0, 1}|x| ∀z ∈ {0, 1}|x|

(C(x)

∧ (size(C) ≥ |x|k+1)
∧ ((size(D) ≥ size(C)) ∨ (D(y) 6= C(y)))

∧ [(size(D′) ≥ |x|k+1) ∧ [((size(D) ≤ size(D′)) ∧ (D(z) = D′(z))) ∨ (C � D)]).

3

The last three lines of the condition each match an item of the requirements and specifies that the
circuit C is precisely C|x|. The first line says that x ∈ A if and only if C|x|(x) is true. This proves
the claim and also the weaker conclusion that A ∈ PH.

We finish the proof of the theorem by analyzing two possible scenarios:

(a) NP ⊆ P/poly. In this case, by the Karp-Lipton Theorem, A ∈ PH = Σp
2 ∩ Πp

2 because the
polynomial time hierarchy collapses, and we are done.

(b) NP * P/poly. In this simpler case, there is some B ∈ NP−P/poly. In particular B /∈ SIZE(nk)
and since NP ⊆ Σp

2 ∩Πp
2, we have B ∈ Σp

2 ∩Πp
2 − SIZE(nk).

This finishes the proof of the Theorem.
Note that this argument is non-constructive: A is an explicit language not in SIZE(nk) and if

NP ⊆ P/poly then A is in Σp
2 ∩ Πp

2. In the second case we do not have an explicit language B and
we also don’t explicitly know which case is true. The latter problem would not be an issue: We
could define a new language A⊗B = {0x | x ∈ A}∪{1x | x ∈ B}, which is at least as hard as both
A and B. However, the former problem is much trickier to deal with but we can get an explcit Σp

2

(or Π2) language that is not in SIZE(nk).
The key to producing an explicit language in Σp

2 − SIZE(nk) is the fact that the proof of the
Karp-Lipton theorem is constructive. The construction for the Karp-Lipton theorem shows that
for any Πp

2 language L defined by an explicit formula ∀u ∈ {0, 1}q(|x|)∃v ∈ {0, 1}q(|x|)R(x, u, v) and
for any polynomial circuit size bound nk, there is another explicit formula

∃〈C ′〉 ∈ {0, 1}n2k∀u ∈ {0, 1}q(|x|)R(x, u, C ′(x, u))

such that if the language L′ defined by ∃v ∈ {0, 1}q(|x|)R(x, u, v) is in SIZE(nk) then the two
formulas define the same language. In general the new formula might not define the same language
so call this resulting Σp

2 language τ(L); this will equal L if L′ ∈ SIZE(nk). Similarly, by taking
complements, for L̄ ∈ Σp

2 there is an explicit τ(L̄) ∈ Πp
2 that is equal to L̄ if L′ ∈ SIZE(nk).

Now let L̄ be the Σp
2 language defined by removing the two initial quantifiers ∃〈C〉 ∈

{0, 1}|x|k+3 ∀〈D〉 ∈ {0, 1}|x|k+3
from the definition of A. Then the Πp

2 language τ(L̄) is equal to
L̄ if L′ ∈ SIZE(nk) where L′ is the NP language related to L defined as above. Now define A′

0 by
x ∈ A′

0 if and only if ∃〈C〉 ∈ {0, 1}|x|k+3 ∀〈D〉 ∈ {0, 1}|x|k+3
x ∈ τ(L̄). Clearly A′

0 is an explicit Σp
3

language and if L′ ∈ SIZE(nk) then A′
0 = A /∈ SIZE(nk). Let A′ = A′

0 ⊗ L′. Then A′ is in Σp
3 but

A′ /∈ SIZE(nk).
Repeating this construction again with A′ instead of A and removing only the initial ∃〈C〉 ∈

{0, 1}|x|k+3
from the Σp

3 definition of A′ we can apply the analogous transformation to the resulting
Πp

2 language and convert A′ to a A′′ = A′′
0 ⊗ L′′ that is in Σp

2 but not in SIZE(nk).

References

[1] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing machines. Journal
of the ACM, 13(4):533–546, 1966.

4

