
Lecture 2

Relation of Polynomial-time Hierarchy,
Circuits, and Randomized Computation

April 3, 2008
Lecturer: Paul Beame

Notes:

2.1 Turing Machines with Advice

Last lecture introduced non-uniformity through circuits. An alternate view of non-uniformity is
Turing machines with an advice tape. The advice tape contains some extra information that
depends only on the length of the input; i.e., on input x the TM gets (x, α|x|).

Definition 2.1 TIME(t(n))/f(n) = {A | A is decided in time O(t(n)) by a TM with advice se-
quence {αn}n such that αn ∈ {0, 1}f(n)}. (Note that the we ignore constant factors in the running
time but not the advice.)

Now we can define the class of languages decidable in polynomial time with polynomial advice:

Definition 2.2 P/poly =
⋃

k,` TIME(nk)/n`

Lemma 2.3 P/poly = POLYSIZE.

Proof POLYSIZE ⊆ P/poly: Given a polynomial-size circuit family {Cn}n produce a P/poly TM
M by using advice strings αn = 〈Cn〉. On input x, M can then evaluate circuit C|x| on input x in
time polynomial in |x| and |〈C|x|〉| which is polynomial in |x|.

P/poly ⊆ POLYSIZE: Given a P/poly TM M with advice strings {αn}n, use the tableau con-
struction from the Cook-Levin Theorem to construct a polynomial size circuit family with the
advice strings hard-coded in the circuit.

If NP ⊆ P then PH = P but although P/poly contains undecidable languages we still get a
collapse of the polynomial-time hierarchy if NP ⊆ P/poly.

Theorem 2.4 (Karp-Lipton) If NP ⊆ P/poly then PH = Σp
2 ∩Πp

2.

Proof Assume that NP ⊆ P/nO(1). It suffices to show that this implies that Πp
2 ⊆ Σp

2. In particular
we use the fact there any NP problem has a polynomial-time circuit to find a Σp

2 algorithm for the
Πp

2-complete problem Π2SAT . Recall that 〈ϕ〉 ∈ Π2SAT if and only if

∀u ∈ {0, 1}n∃v ∈ {0, 1}n ϕ(u, v).

1

Observe that {(〈ϕ〉, u) | ∃v ∈ {0, 1}n ϕ(u, v)} is an NP language. Therefore, by assumption, there
exists a circuit family {Cn}n of size q(n) for some polynomial q such that Cn(〈ϕ〉, u) = 1 if and
only if ∃v ∈ {0, 1}n ϕ(u, v). It would be then seem natural to define a Σp

2 algorithm to existentially
quantify over the bits of the encoding of 〈Cn〉 and then universally quantify over u. The difficulty is
that we don’t know that the bits sequence actually is for the correct circuit Cn that actually solve
the NP problem. However, by applying the standard polynomial self-reduction for NP problems
we can convert the circuit family {Cn}n to a circuit family {C ′

n}n that on input (〈ϕ〉, u) actually
produces a v′ ∈ {0, 1}n such that ϕ(u, v′) is true if one exists. (The circuit C ′

n will have to make
n calls to the circuit Cn successively fixing one bit of v′ at a time so its size will be at most nq(n)
and thus 〈C ′

n〉 will be at most n2q2(n) bits long.) Therefore the Σp
2 characterization of Π2SAT is

∃〈C ′
n〉∀u ∈ {0, 1}n, ϕ(u, C ′

n(〈ϕ〉, u)),

which is what we needed to show

2.2 Probabilistic Complexity Classes

A probabilistic (randomized) TM is an ordinary multi-tape TM with an extra one-way read-only
coin flip (random) tape. If the running time of M is T (n) then on input x, the coin flip tape is
initialized to a uniformly random string r ∈ {0, 1}f(|x|) where f(n) ≤ T (n). If r is the string of coin
flips for a machine M then we write T (n) then |r| ≤ T (n). Now we can write M(x, r) to denote
the output of M on input x with random tape r where M(x, r) = 1 if M accepts and M(x, r) = 0
if M rejects.

A probabilistic polynomial-time Turing Machine (PPT) is a probabilistic Turing Machine whose
worst-case running time T (n) is polynomial in n.

We can now define several probabilistic complexity classes. (The terminology, due to Gill who
introduced these classes, is not the most natural but it has stuck.)

Definition 2.5 Randomized Polynomial Time: L ∈ RP if and only if there exists a probabilistic
polynomial time TM M such that for some error ε < 1,

• ∀w ∈ L, Pr[M accepts w] ≥ 1− ε, and

• ∀w /∈ L, Pr[M accepts w] = 0.

equivalently ∀w ∈ L, Prr[M(w, r) = 1] ≥ 1− ε and ∀w /∈ L, Prr[M(w, r) = 1] = 0.

The error, ε, is fixed for all input sizes. RP is the class of problems with one-sided error (i.e.
an accept answer is always correct, whereas a reject may be incorrect.) coRP, which has one-sided
error in the other direction, is defined analogously. The following class encompasses machines with
two-sided error:

Definition 2.6 Bounded-error Probabilistic Polytime: L ∈ BPP if and only if there exists a
probabilistic polynomial time TM M such that for some ε < 1

2 ,

• ∀w ∈ L, Pr[M accepts w] ≥ 1− ε and

• ∀w /∈ L, Pr[M accepts w] ≤ ε.

2

If we identify the language L with its characteristic function L(w) =

{
1 if w ∈ L

0 if w /∈ L
then we can

write this equivalently as L ∈ BPP iff for all w we have Prr[M(w, r) = L(w)] ≥ 1− ε.

Clearly RP ⊆ NP, coRP ⊆ coNP. Also RP, coRP ⊆ BPP and BPP is closed under complement.
Randomized algorithms with 1-sided or 2-sided errors such as these are known as Monte Carlo
algorithms. Although we have so far required that the error in the definitions of BPP,RP, and coRP
be constant we can consider the more general case when the error ε = ε(n) is a function of the
input size.

Definition 2.7 Zero-error Probabilistic Polytime: ZPP = RP ∩ coRP.

Lemma 2.8 L ∈ ZPP if and only if there is a probabilistic TM M that always outputs the correct
answer (i.e, L(M) = L) and the expected runtime of M is polynomial.

Proof
⇒: Let M1 be an RP machine for L, and M2 be a coRP machine for L with errors ε1, ε2 < 1.
Define a probabilistic TN M that repeatedly runs M1 followed by M2 using independent random
strings until one accepts. If either accepts then the answer must be correct so if M1 accepts, then
accept and if M2 accepts then reject. Let ε = max(ε1, ε2). We expect to have to run at most 1

1−ε
trials before one accepts. Thus M decides L in polynomial expected time.

⇐: Let T (n) be the expected running time of a probabilistic TM M that always outputs the correct
answer for language L. By Markov’s inequality the probability that M runs for more than 3T (n)
steps is at most 1/3. To get an RP algorithm M ′ for L truncate the computation of M after 3T (n)
steps. If M has accepted then accept, otherwise reject. If w ∈ L then M ′ will accept w with
probability at least 2/3 and if w /∈ L then M will not accept w no matter what the random string.
The algorithm for coRP is completely dual.

Randomized algorithms that are always correct but may run forever are known as Las Vegas
algorithms. Our last probabilistic complexity class is much more powerful:

Definition 2.9 Probabilistic Polytime: L ∈ PP if and only if

Pr
r

[M(w, r) = L(w)] >
1
2
.

Here the error is allowed to be exponentially close to 1/2, which is the key difference from BPP.

Note that with PP, it might take exponentially many trials even to notice the probability
advantage.

2.2.1 Amplification

Lemma 2.10 For any probabilistic TM M with running time T (n) and two-sided error ε(n) =
1
2 − δ(n) there is a probabilistic TM M ′ with running time at most O(m

δ2(n)
T (n)) and error at most

2−m for the same language.

3

Proof M ′ simply runs M some number, k, times and takes the majority vote. The result follows
by simple Chernoff bounds. We give a detailed calculation below. The error is:

Pr
r

[M ′(x, r) 6= L(x)] = Pr[≥ k

2
wrong answers on x]

=
k/2∑
i=0

Pr[
k

2
+ i wrong answers of M on x]

=
k/2∑
i=0

(
k

k
2 + i

)
ε

k
2
+i(1− ε)

k
2
+i

≤
k/2∑
i=0

(
k

k
2 + i

)
ε

k
2 (1− ε)

k
2

≤ 2kε
k
2 (1− ε)

k
2

=
[
4(

1
2
− δ)(

1
2

+ δ)
] k

2

= (1− 4δ2)
k
2

≤ e−2δ2k since 1− x ≤ e−x

≤ 2−m for k =
m

δ2

Note that amplification from sub-constant to constant error allows us to generalize the definition
of BPP to allow ε = ε(n) = 1/2 − δ(n) for δ(n) ≥ 1/q(n) for any polynomial q. However for PP,
this amplification does not yield an efficient algorithm since δ(n) may be 2−n.

A similar approach can be used with an RP language, this time accepting if any of the k trials
accept. This gives an error of εk, where we can choose k = m

log(1
ε
)
.

2.3 Randomness and Non-uniformity

The following theorem show that randomness is no more powerful than advice in general.

Theorem 2.11 (Gill, Adleman) BPP ⊆ P/poly.

Proof Let L ∈ BPP. By the amplification lemma, there exists a BPP machine M for L and a
polynomial p such that:

∀x Pr
r∈{0,1}p(n)

[M(x, r) 6= L(x)] ≤ 2−n−1.

For r ∈ {0, 1}p(n) say that r is bad for x iff M(x, r) 6= L(x). By assumption, for all x ∈ {0, 1}n,

Pr
r

[r is bad for x] ≤ 2−n−1

4

We say that r is bad if there exists an x ∈ {0, 1}n such that r is bad for x.

Pr
r

[r is bad] ≤
∑

x∈{0,1}n

Pr
r

[r is bad for x]

≤ 2n2−n−1 ≤ 1/2 < 1.

Therefore for every n there must exist an rn ∈ {0, 1}p(n) such that rn is not bad. (In fact this is
true by construction for at least half the strings in {0, 1}p(n).) We can use this sequence {rn}n as
the advice sequence for a P/poly machine that decides L. Each advice string is a particular random
string rn that leads to a correct answer for every input of length n.

2.4 BPP and the Polynomial-time Hierarchy

We know that RP ⊆ NP. Here we see that generalizing to bounded 2-sided error still stays within
PH.

Theorem 2.12 (Sipser-Gacs, Lautemann) BPP ⊆ Σp
2 ∩Πp

2

Proof Note that BPP is closed under complement, so it suffices to show BPP ⊆ Σp
2.

Let L ∈ BPP. Then by amplification, there is a probabilistic polytime TM M and polynomial p(n)
such that

Pr
r∈{0,1}p(n)

[M(x, r) 6= L(x)] ≤ 2−n.

Define AccM (x) = {r ∈ {0, 1}p(n) | M(x, r) = 1}. We have two cases: either AccM (x) is almost all
of {0, 1}p(n) and we should accept x or AccM (x) is only an exponentially small fraction of {0, 1}p(n)

and we should reject x. Moreover, we have a polynomial-time algorithm to determine membership
in AccM (x), namely on input r simply run M(x, r).

The general property we will prove is that for if a set S ⊆ {0, 1}m contains a large fraction of
{0, 1}m then a small number of translations of S will cover {0, 1}m but if S is a small fraction of
{0, 1}m then no small set of translations will suffice to cover the set. The translation we use is just
bit-wise exclusive or of bit vectors, ⊕. For S ⊆ {0, 1}m and t ∈ {0, 1}m, define S⊕t = {s⊕t|s ∈ S}.
Note that |S ⊕ t| = |S| and that b ∈ S ⊕ t if and only if t ∈ S ⊕ b.

Lemma 2.13 (Lautemann) Let S ⊆ {0, 1}m. If |S|
2m > 1

2 then there exists t1, . . . , tm ∈ {0, 1}m

such that,
m⋃

j=1

(S ⊕ tj) = {0, 1}m.

Proof By the probabilistic method.
Let |S| > 2m−1 be a sufficiently large set as defined above. Choose t1, · · · , tm uniformly and
independently at random from {0, 1}m. Fix a string b ∈ {0, 1}m and j ∈ [m] = {1, . . . ,m}.

Pr[b ∈ S ⊕ tj] = Pr[tj ∈ S ⊕ b] = Pr[tj ∈ S] >
1
2
.

5

Therefore for any j ∈ [m], Pr[b /∈ S ⊕ tj] < 1/2. The probability that b is not in any of the m
translations is then

Pr[b /∈
m⋃

j=1

(S ⊕ tj)] =
m∏

j=1

Pr[b /∈ S ⊕ tj] < 2−m.

Therefore

Pr[∃b ∈ {0, 1}m s.t. b /∈
m⋃

j=1

(S ⊕ tj)] < 2m2−m = 1.

Therefore there exists a set t1, . . . , tm such that the union of the translations of S by the tj covers
all strings in {0, 1}m.

Now apply Lautemann’s lemma with S = AccM (x) and m = p(n). If x /∈ L then AccM (x) is
only a 2−n fraction of {0, 1}m, and so m translations will only be able to cover at most an p(n)2−n

fraction of {0, 1}m, certainly not all of it. This gives us the following Σp
2 characterization of L:

x ∈ L ⇔ ∃(t1, . . . , tp(|x|)) ∈ {0, 1}p2(|x|)∀r ∈ {0, 1}p(|x|)(M(x, r⊕ t1) = 1∨ . . .∨M(x, r⊕ tp(|x|)) = 1).

6

