CSE 532 Spring 2008 Computational Complexity II Problem Set #2 Due: June 10, 2008

Problems:

- 1. In this problem you will show that for any prime q, any function f computable in $AC^{0}[q]$ can be computed by a depth 3 threshold circuit of size $n^{\log^{O(1)} n}$.
 - (a) A probabilistic circuit is a circuit C that in addition to its regular input x takes as input a vector r of bits. The values of the bits r is chosen uniformly at random. It computes a function f with error at most ϵ if $Pr_r[C(x, r) \neq f(x)] \leq \epsilon$. A special example is to consider probablistic depth-2 $AC^0[q]$ circuits that consist of a MOD_q gates of ANDgates, i.e. multivariate polynomials p over \mathbb{F}_q that on input x and random string r output $p(x, r) \in \{0, 1\}$.

Use the construction given in class to show that for any constant ℓ there is a polynomial p of degree $O(\log n)$ that computes the OR of n-bits with error at most $1/n^{\ell}$ (and similarly for the AND of n bits).

- (b) Use part (a) and induction on the depth (using the distributive law) to show that for any ℓ' > 0, any function computed by polynomial-size AC_q⁰ circuit of depth k can be computed by a probabilistic multivariate polynomial p over F_q of degree O(log^k n) and n^{O(log^k n)} monomials with error at most 1/n^{ℓ'}.
- (c) Now apply the construction which showed that $\mathsf{BPP} \subseteq \mathsf{P}/\mathsf{poly}$ to the polynomials in part (b) to compute any $\mathsf{AC}^0[q]$ function of depth k using a circuit consisting of a *MAJORITY* gate applied to $n^{O(1)}$ polynomials over \mathbb{F}_q of degree $O(\log^k n)$ each having $n^{O(\log^k n)}$ monomials.
- (d) Finally, take the result of part (c) and convert it to a circuit of size $n^{O(\log^k n)}$ consisting of a *MAJORITY* of *MAJORITY* gates whose inputs are *AND* gates of fan-in $O(\log^k n)$.
- 2. We showed two different methods for obtaining lower bounds on deterministic communication complexity. One was via fooling sets: We showed that $D^{cc}(f) \ge \log_2 |A|$ where $A = \{(x_1, y_1), \ldots, (x_m, y_m)\}$ is a set of input pairs such that $f(x_j, y_j) = 1$ but for any $i \ne j$ at least one of $f(x_i, y_j)$ or $f(x_j, y_i)$ is 0. We also showed that $D^{cc}(f) \ge \log_2 rank(M_f)$. Show that for any fooling set A, $|A| \le rank(M_f)^2$ and therefore the rank lower bound is always at least half the fooling set lower bound. To do this define a new matrix M^* which is the outer product of $M_f \otimes M_f^T$ and look at the submatrix of M^* whose rows and columns are indexed by elements of A. (The matrix $M \otimes N$ is the matrix with $rows(M) \cdot rows(N)$ rows and $cols(M) \cdot cols(N)$ columns that replaces each entry m_{ij} of M with the matrix $m_{ij}N$. You will need the fact that $rank(M \otimes N) = rank(M) \cdot rank(N)$.)

- 3. A Boolean formula F is *read-once* if and only if each variable labels at most one leaf of F. Suppose that function f : {0,1}ⁿ → {0,1} is computed by a read-once formula. Define g(x, y) = f(x₁ ⊕ y₁, x₂ ⊕ y₂,..., x_n ⊕ y_n). Use induction and the rank lower bound to prove that D^{cc}(g) ≥ n. Hint: Use the rank property of ⊗ as above and the fact that the all 1 J-matrix has rank 1.
- 4. We can define a distribution on restrictions $R_{p,n}$ in which each bit is unset with probability p and each bit that is set is chosen independently and uniformly at random. We can apply restrictions to formulas simplyfing them by propagating the values.
 - (a) Show that given a De Morgan formula F with s leaves the expected number of leaves of $F|_{\rho}$ for ρ chosen from $R_{p,n}$ is at most a constant times $p^{3/2}s + 1$. (One might expect ps but one can do better.)
 - (b) Use part (a) to show that $Parity_n$ requires formula size $\Omega(n^{3/2})$.
 - (c) Define the function $g : \{0, 1\}^{n + \log_2 n} \to \{0, 1\}$ to be $g_{x_1 \dots x_n}(x_{n+1}, \dots, x_{n+\log_2 n})$ where $g_{x_1 \dots x_n} : \{0, 1\}^{\log_2 n} \to \{0, 1\}$ is the function whose truth table has x_i as its *i*-th entry. Use Shannon's Theorem for formulas to derive that for almost all choices of x_1, \dots, x_n we have that $L(g_{x_1,\dots,x_n})$ is $\Omega(n)$.
 - (d) Using g we can define an explicit function f on $(1 + \log_2 n)n$ bits denoted as $x_{i,j}$ for $0 \le i \le \log_2 n$ and $1 \le j \le n$ where

$$f(x) = g_{x_{0,1}...x_{0,n}}(\bigoplus_{j=1}^{n} x_{1,j}, \cdots, \bigoplus_{j=1}^{n} x_{\log_2 n,j}).$$

Now, using ideas similar to part (b) above, apply part (a) to derive that L(f) is $\Omega(n^{5/2-\epsilon})$ for any $\epsilon > 0$.