
CSE 532 Spring 2008
Computational Complexity II

Problem Set #2
Due: June 10, 2008

Problems:

1. In this problem you will show that for any prime q, any function f computable in AC0[q] can
be computed by a depth 3 threshold circuit of size nlogO(1) n.

(a) A probabilistic circuit is a circuit C that in addition to its regular input x takes as input
a vector r of bits. The values of the bits r is chosen uniformly at random. It computes
a function f with error at most ε if Prr[C(x, r) 6= f(x)] ≤ ε. A special example is to
consider probablistic depth-2 AC0[q] circuits that consist of a MODq gates of AND
gates, i.e. multivariate polynomials p over Fq that on input x and random string r output
p(x, r) ∈ {0, 1}.
Use the construction given in class to show that for any constant ` there is a polynomial
p of degree O(log n) that computes the OR of n-bits with error at most 1/n` (and
similarly for the AND of n bits).

(b) Use part (a) and induction on the depth (using the distributive law) to show that for
any `′ > 0, any function computed by polynomial-size AC0

q circuit of depth k can be
computed by a probabilistic multivariate polynomial p over Fq of degree O(logk n) and
nO(logk n) monomials with error at most 1/n`′ .

(c) Now apply the construction which showed that BPP ⊆ P/poly to the polynomials
in part (b) to compute any AC0[q] function of depth k using a circuit consisting of
a MAJORITY gate applied to nO(1) polynomials over Fq of degree O(logk n) each
having nO(logk n) monomials.

(d) Finally, take the result of part (c) and convert it to a circuit of size nO(logk n) consisting
of a MAJORITY of MAJORITY gates whose inputs are AND gates of fan-in
O(logkn).

2. We showed two different methods for obtaining lower bounds on deterministic communi-
cation complexity. One was via fooling sets: We showed that Dcc(f) ≥ log2 |A| where
A = {(x1, y1), . . . , (xm, ym)} is a set of input pairs such that f(xj, yj) = 1 but for any i 6= j
at least one of f(xi, yj) or f(xj, yi) is 0. We also showed that Dcc(f) ≥ log2 rank(Mf ).
Show that for any fooling set A, |A| ≤ rank(Mf )

2 and therefore the rank lower bound is
always at least half the fooling set lower bound. To do this define a new matrix M∗ which is
the outer product of Mf ⊗MT

f and look at the submatrix of M∗ whose rows and columns are
indexed by elements of A. (The matrix M ⊗N is the matrix with rows(M) · rows(N) rows
and cols(M) · cols(N) columns that replaces each entry mij of M with the matrix mijN .
You will need the fact that rank(M ⊗N) = rank(M) · rank(N).)
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3. A Boolean formula F is read-once if and only if each variable labels at most one leaf of F .
Suppose that function f : {0, 1}n → {0, 1} is computed by a read-once formula. Define
g(x, y) = f(x1 ⊕ y1, x2 ⊕ y2, . . . , xn ⊕ yn). Use induction and the rank lower bound to
prove that Dcc(g) ≥ n. Hint: Use the rank property of ⊗ as above and the fact that the all 1
J-matrix has rank 1.

4. We can define a distribution on restrictions Rp,n in which each bit is unset with probability
p and each bit that is set is chosen independently and uniformly at random. We can apply
restrictions to formulas simplyfing them by propagating the values.

(a) Show that given a De Morgan formula F with s leaves the expected number of leaves
of F |ρ for ρ chosen from Rp,n is at most a constant times p3/2s + 1. (One might expect
ps but one can do better.)

(b) Use part (a) to show that Parityn requires formula size Ω(n3/2).

(c) Define the function g : {0, 1}n+log2 n → {0, 1} to be gx1...xn(xn+1, . . . , xn+log2 n) where
gx1...xn : {0, 1}log2 n → {0, 1} is the function whose truth table has xi as its i-th entry.
Use Shannon’s Theorem for formulas to derive that for almost all choices of x1, . . . xn

we have that L(gx1,...,xn) is Ω(n).

(d) Using g we can define an explicit function f on (1 + log2 n)n bits denoted as xi,j for
0 ≤ i ≤ log2 n and 1 ≤ j ≤ n where

f(x) = gx0,1...x0,n(⊕n
j=1x1,j, · · · ,⊕n

j=1xlog2 n,j).

Now, using ideas similar to part (b) above, apply part (a) to derive that L(f) is Ω(n5/2−ε)
for any ε > 0.
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