Problems:

CSE 532 Spring 2008
Computational Complexity I1
Problem Set #2
Due: June 10, 2008

1. In this problem you will show that for any prime ¢, any function f computable in AC’ [q] can
be computed by a depth 3 threshold circuit of size nlee”"n,

(a)

(b)

(c)

(d)

A probabilistic circuit is a circuit C' that in addition to its regular input x takes as input
a vector r of bits. The values of the bits r is chosen uniformly at random. It computes
a function f with error at most € if Pr,[C(z,r) # f(x)] < e. A special example is to
consider probablistic depth-2 ACO[q] circuits that consist of a M OD, gates of AND
gates, i.e. multivariate polynomials p over [F, that on input x and random string r output
p(z,r) € {0,1}.

Use the construction given in class to show that for any constant ¢ there is a polynomial
p of degree O(logn) that computes the OR of n-bits with error at most 1/n’ (and
similarly for the AN D of n bits).

Use part (a) and induction on the depth (using the distributive law) to show that for
any ¢ > 0, any function computed by polynomial-size A02 circuit of depth £ can be
computed by a probabilistic multivariate polynomial p over I, of degree O(logk n) and
nCUog" ) monomials with error at most 1/n’ .

Now apply the construction which showed that BPP C P/poly to the polynomials
in part (b) to compute any AC’ [q] function of depth k using a circuit consisting of
a MAJORITY gate applied to n®1) polynomials over F, of degree O(log" n) each
having n°0°" ») monomials.

Finally, take the result of part (c) and convert it to a circuit of size nOog" n) consisting

of a MAJORITY of MAJORITY gates whose inputs are AN D gates of fan-in
O(logkn).

2. We showed two different methods for obtaining lower bounds on deterministic communi-
cation complexity. One was via fooling sets: We showed that D°(f) > log, |A| where

A:

{(z1,91), ..., (Tm, ym)} is a set of input pairs such that f(z,,y,;) = 1 but for any i # j

at least one of f(z;,y;) or f(z;,y;) is 0. We also showed that D*(f) > log, rank(Mj ).
Show that for any fooling set A, |A| < rank(M;)? and therefore the rank lower bound is
always at least half the fooling set lower bound. To do this define a new matrix M* which is
the outer product of My ® M}F and look at the submatrix of M * whose rows and columns are
indexed by elements of A. (The matrix M ® N is the matrix with rows(M) - rows(N) rows
and cols(M) - cols(NN') columns that replaces each entry m,; of M with the matrix m;; N.
You will need the fact that rank(M ® N) = rank(M) - rank(N).)
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3. A Boolean formula F' is read-once if and only if each variable labels at most one leaf of F'.
Suppose that function f : {0,1}" — {0,1} is computed by a read-once formula. Define
g(x,y) = f(z1 ® y1,22 B Ya,...,Tn B yp). Use induction and the rank lower bound to
prove that D“(g) > n. Hint: Use the rank property of ® as above and the fact that the all 1
J-matrix has rank 1.

4. We can define a distribution on restrictions 1, ,, in which each bit is unset with probability
p and each bit that is set is chosen independently and uniformly at random. We can apply
restrictions to formulas simplyfing them by propagating the values.

(a) Show that given a De Morgan formula F' with s leaves the expected number of leaves
of F|, for p chosen from R, ,, is at most a constant times p3/%s + 1. (One might expect
ps but one can do better.)

(b) Use part (a) to show that Parity, requires formula size Q(n3/ 2).

(c) Define the function g : {0, 1}"1°&2" — {0, 1} to be ¢, o, (Tni1, - - - s Tntlog, n) Where
Gy © 10,1H982™ — L0, 1} is the function whose truth table has z; as its i-th entry.
Use Shannon’s Theorem for formulas to derive that for almost all choices of z1, ...z,
we have that L(gy, .. ., ) is Q(n).

(d) Using g we can define an explicit function f on (1 + log, n)n bits denoted as x; ; for
0<i1<logsnand 1 < j <n where

f(x) = Y9z0,1...20,n (@?:1x17j7 B @?zlxlogz nJ)'

Now, using ideas similar to part (b) above, apply part (a) to derive that L( f) is Q(n®/?~¢)
for any € > 0.



