
Lecture 1

Review of Basic Computational Complexity

March 30, 2004
Lecturer: Paul Beame

Notes: Daniel Lowd

1.1 Preliminaries

1.1.1 Texts

There is no one textbook that covers everything in this course. Some of the discoveries are simply too recent.
For the first portion of the course, however, two supplementary texts may be useful.

• Michael Sipser, Introduction to the Theory of Computation.

• Christos Papadimitrion, Computational Complexity

1.1.2 Coursework

Required work for this course consists of lecture notes and group assignments. Each student is assigned
to take thorough lecture notes no more than twice during the quarter. The student must then type up the
notes in expanded form in LATEX. Lecture notes may also contain additional references or details omitted in
class. A LATEXstylesheet for this will soon be made available on the course webpage. Notes should be typed,
submitted, revised, and posted to the course webpage within one week.

Group assignments will be homework sets that may be done cooperatively. In fact, cooperation is
encouraged. Credit to collaborators should be given. There will be no tests.

1.1.3 Overview

The first part of the course will predominantly discuss complexity classes above NPrelate randomness, cir-
cuits, and counting, to P, NP, and the polynomial time hierarchy. One of the motivating goals is to consider
how one might separate P from classes above P. Results covered will range from the 1970’s to recent work,
including tradeoffs between time and space complexity. In the middle section of the course we will cover
the powerful role that interaction has played in our understanding of computational complexity and, in par-
ticular, the powerful results on probabilistically checkable proofs (PCP). These ideas were developed in the
late 1980’s continuing through the 1990’s. Finally, we will look at techniques for separating non-uniform
complexity classes from P. These have been applied particularly to separate classes inside P from P. The
results here are from the 1980’s and early 1990’s.
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1.2 Basic Complexity Classes

For this course we will use the following standard basis for defining complexity classes using multitape
(offline) Turing machines.

Definition 1.1. An (offline) Multitape Turing Machine is a Turing machine that consists of

• Finite state control,

• A read-only input tape, and

• Multiple read-write storage tapes

(The read-only input tape will only be required for the definitions of space complexity.) Whenever we use
the terminology Turing machine, or TM, we assume a multitape offline Turing machine unless otherwise
specified; similarly for NTM in the nondeterministic case.

The two main parameters for measuring resources used by a computation are
Time = # of steps of the Turing machine, and
Space = largest numbered cell accessed on any storage tape.

Note that this is a small change from the definitions in the Sipser text which defines complexity classes
in (a nonstandard way) using single tape Turing machines. Use of multiple tapes is important to distin-
guish between different subclasses in P. A single tape requires a Turing machine to move back and forth
excessively, where a multitape Turing machine might be able to solve the problem much more efficiently.

Lemma 1.1. For T (n) ≥ n, if language A can be decided in time T (n) by a multitape TM then a 1-tape
TM can decide A in time O(T 2(n)) time.

The following example shows that this is tight. Consider the language PALINDROME = {x ∈
{0, 1}∗ | x = xR}. It is fairly straightforward to see how a multitape Turing machine could decide the
language in linear time O(|x|) by copying its input string in reverse onto a second tape and then comparing
the two tapes character by character. It can also be shown that a single tape Turing machine must take
longer:

Theorem 1.2 (Cobham). PALINDROME requires time Ω(n2) on 1-tape Turing machines.

Proof. Exercise.

One can simulate any multitape TM with only 2 tapes with a much smaller slowdown.

Lemma 1.3 (Hennie-Stearns). For T (n) ≥ n, if language A can be decided in time T (n) by a multitape
TM then a 1-tape TM can decide A in time O(T (n) log T (n)) time.

The proof of this fact is much more involved and we will look at this proof in a more general context.
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1.2.1 Time Complexity

Definition 1.2. For T : N→ R+,
TIME(T (n)) = {A ⊆ {0, 1}∗ | A can be decided by a multitape TM M in O(T (n)) time}, and
NTIME(T (n)) = {A ⊆ {0, 1}∗ | A can be decided by a multitape NTM M in O(T (n)) time}.
Definition 1.3. Recall the following derived time complexity classes,

P =
⋃

k

TIME(nk)

NP =
⋃

k

NTIME(nk)

EXP =
⋃

k

TIME(2n
k
)

NEXP =
⋃

k

NTIME(2n
k
)

E =
⋃

k

TIME(kn) =
⋃

k

TIME(2kn)

NE =
⋃

k

NTIME(kn) =
⋃

k

NTIME(2kn).

Note that E and NE which we may encounter will be seen to be somewhat different from the others because
they are not closed under polynomial-time reductions.

1.2.2 Polynomial-time Reductions

Many-one/Karp/Mapping reductions

Definition 1.4. A ≤pm B iff there is a polynomial-time computable f such that x ∈ A⇔ f(x) ∈ B

Turing/Cook/Oracle reductions

Definition 1.5. An oracle TM M ? is an ordinary Turing machine augmented with a separate read/write
oracle query tape, oracle query state, and 2 oracle answer states, Y and N. When furnished with an oracle
B, whenever M ? enters the oracle query state, and enters state Y or N depending on whether or not the
contents of the oracle query tape is in language B. Cost for an oracle query is a single time step. If answers
to oracle queries are given by membership in B, then we refer to the oracle TM as M B .

Definition 1.6. A ≤pT B iff there is a polynomial-time oracle TM M ? such that A = L(MB)

In other words, M can decide A in polynomial time given a subroutine for B that costs one time step
per call.

1.2.3 NP-completeness

Definition 1.7. L is NP-complete iff:

1. L ∈ NP
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2. ∀A ∈ NP, A ≤pm L

Theorem 1.4 (Cook). SAT = {〈ϕ〉 | ϕ is a satisfiable propositional logic formula} is NP-complete.

Definition 1.8. For any complexity class C, define coC = {L | L ∈ C}.

For example, the class coNP is the set of all languages whose complements are in NP. The following
languages are both coNP-complete:

• UNSAT = {〈ϕ〉 | φ is an unsatisfiable propositional logic formula }

• TAUT = {〈ϕ〉 | ϕ is a propositional logic tautology }

Note: UNSAT ≤PT SAT since Turing reductions don’t distinguish between languages and their comple-
ments.

Definition 1.9. Define ∀k and ∃k as quantifiers over {0, 1}≤k the set of binary strings of length at most k.

Using this notation we have an alternative characterization of NP in terms of polynomial-time verifiers.

A ∈ NP⇔ there is some R ∈ P and polynomial p : N→ N such that A = {x | ∃p(|x|)y ·(x, y) ∈ R}; or
in functional rather than set form there is some polynomial-time computable R such that A = {x | ∃p(|x|)y ·
R(x, y)}.

A ∈ coNP⇔ there is some R ∈ P and polynomial p : N→ N such that A = {x | ∀p(|x|)y · (x, y) ∈ R}.

1.2.4 Space Complexity

Definition 1.10. For S : N→ R+, define
SPACE(S(n)) = {A ⊆ {0, 1}∗ | A is decided by a multitape (offline) TM using storage O(S(n))}
NSPACE(S(n)) = {A ⊆ {0, 1}∗ | A is decided by a multitape (offline) NTM using storage O(S(n))}
Definition 1.11.

PSPACE =
⋃

k

SPACE(nk)

L = SPACE(log n)

NL = NSPACE(log n)

Theorem 1.5. For S(n) ≥ log n,
(a) [Savitch] NSPACE(S(n)) ⊆ SPACE(S2(n)),
(b) [Immerman-Szelepcsenyi] NSPACE(S(n)) = co− NSPACE(S(n)).

Savitch’s theorem implies that PSPACE could equally well have been defined using nondeterministic
space complexity.

Theorem 1.6. For S(n) ≥ log n, NSPACE(S(n)) ⊆ TIME(2O(S(n))).

Proof idea. An NSPACE(S(n)) computation accepts an input x iff there is a computation path from the
starting configuration s to a unique accepting configuration t in the graph of all possible configurations with
input x, which there are 2O(S(n)) nodes. This can be solved in time linear in the size of the graph using BFS
or DFS.
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Theorem 1.7. NTIME(T (n)) ⊆ SPACE(T (n)).

Proof idea. Each computation of the NTM of length cT (n) visits at most cT (n) + 1 cells on each storage
tape. The algorithm successively generates all possible sequences of nondeterministic choices of length
cT (n) and exhaustively tries each sequence.

Corollary 1.8. L ⊆ NL ⊆ P ⊆ NP

coNP
⊆ PSPACE ⊆ EXP ⊆ NEXP.

Definition 1.12. A language L is PSPACE-complete iff

1. L ∈ PSPACE, and

2. ∀A ∈ PSPACE, A ≤pm L.

Definition 1.13. Define
TQBF = {〈Ψ〉 | ∃k,Q1, Q2, . . . , Qk ∈ {∃,∀} such that Ψ = Q1x1 . . . Qkxkϕ, where ϕ is a propositional
logic formula in x1, x2, . . . , xn, and Ψ evaluates to true }.

Theorem 1.9. TQBF is PSPACE-complete.

1.2.5 Complexity Class Hierarchy Theorems

Definition 1.14. T (n) is time-constructable iff there is a TM running in time ≤ T (n) that computes 1n →
T (n), where T (n) is expressed in binary.
S(n) is space-constructable iff there is a TM running in space ≤ S(n) that computes the function 1n →
S(n), where S(n) is expressed in binary.

Theorem 1.10. 1. If g(n) ≥ log(n) is space-constructable and f(n) is o(g(n)) then SPACE(f(n)) (

SPACE(g(n)), and NSPACE(f(n)) ( NSPACE(g(n)).

2. If g(n) ≥ n is time constructable and f(n) log f(n) is o(g(n)) then TIME(f(n)) ( TIME(g(n)).

Proof Sketch. The general idea of all of these theorems is to diagonalize over all TM’s with time (space)
bounded by f(n). In order to do this one diagonalizes over all Turing machines but with an extra clock (in
the case of time) or space limiter (in the case of space) to make sure that the machine involved won’t take
too many resources.

In the case of the space hierarchy, this diagonalization must be done by a single Turing machine so in
order to simulate other Turing machines with larger alphabets there must be a constant-factor slowdown in
the simulation. The Immerman-Szelepcsenyi theorem allows the complementation to take place in the case
of nondeterministic space.

For the time hierarchy the proof in the multitape case is very different from the single tape case given
in Sipser’s text despite the fact that the claim is the same. In the single tape case, the O(log f(n)) factor is
due to the requirement to update the clock (and shift it along the tape) at each step. In the multitape case,
the O(log f(n)) factor slowdown is due the requirement of having a machine with a fixed number of tapes
simulate machines with arbitrary numbers of tapes.

Corollary 1.11. NL ( PSPACE; P ( EXP.
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1.2.6 Relativized Complexity Classes

Definition 1.15. Given a language A, we can define PA = {B | B ≤pT A}.

That is, to obtain the languages in PA we can take any polynomial-time oracle TMM ?, plug in A as the
oracle and look at what language the machine accepts. This yields an alternate version of the definition that
can also be extended to nondeterministic Turing machines.

Definition 1.16. For any language A define PA = {L(MA) |M ? is a polynomial-time oracle TM } and
NPA = {L(MA) |M ? is a polynomial-time oracle NTM }.
For any complexity class C define PC =

⋃
A∈C

PA, NPC =
⋃
A∈C

NPA,

Remark. Note that PSAT = PNP by the fact that SAT is NP-complete under polynomial-time Turing reduc-
tions.



Lecture 2

Polynomial Time Hierarchy and Nonuniform
Complexity

April 1, 2004
Lecturer: Paul Beame
Notes: Ioannis Giotis

2.1 Definition

Recall the following definitions of relativized complexity classes.

Definition 2.1. For any language A define PA = {L(MA) |M ? is a polynomial-time oracle TM } and
NPA = {L(MA) |M ? is a polynomial-time oracle NTM }.
For any complexity class C define PC =

⋃
A∈C

PA, NPC =
⋃
A∈C

NPA,

Definition 2.2. We define the classes in the polynomial-time hierarchy by

Σ0P = Π0P = ∆0P = P

∆i+1P = PΣiP

Σi+1P = NPΣiP

Πi+1P = coNPΣiP

Unwinding the definition we obtain some basic complexity classes.

∆1P = PP = P

Σ1P = NPP = NP

Π1P = coNPP = coNP

∆2P = PNP = PSAT ⊇ coNP

Σ2P = NPNP

Π2P = coNPNP

An example language in PNP is the following, which is the difference between
{〈G, k〉 | G has a k-clique} and {〈G, k〉 | G has a (k + 1)-clique}.

EXACT-CLIQUE = {〈G, k〉| the largest clique in G has size k}

Observe that, since oracle TMs can easily flip the answers they receive from the oracle, PΣiP =
PΠiP,NPΣiP = NPΠiP, coNPΣiP = coNPΠiP

7
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P
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…

Figure 2.1: The polynomial time hierarchy

Definition 2.3. The polynomial-time hierarchy PH =
⋃
k ΣkP =

⋃
k ΠkP

Probably the most important question about the polynomial-time hierarchy is given by the following
conjecture.

Conjecture 2.1. ∀k PH 6= ΣkP.

Note that this very natural conjecture generalizes the conjectures that P 6= NP, since if P = NP then
PH = P = Σ0P, and that NP 6= coNP, since in that case PH = NP = Σ1P. Several results in this
course will be conditional based on this conjecture, namely that some natural property will hold unless the
polynomial-time hierarchy PH collapses to some level, say ΣkP.

2.2 Alternative Characterization of the Hierarchy Classes

The following characterization of languages in ΣkP is useful for obtaining a simpler alternative characteri-
zation of PH.

Theorem 2.2. L ∈ Σi+1P if and only if there exists a language R ∈ ΠiP and polynomial p : N → N such
that L = {x| ∃p(|x|)y. (x, y) ∈ R}.

Proof. By induction. Base case i = 0 follows from the alternate characterization of NP: L ∈ NP ⇔ there
is some R ∈ P and polynomial p : N→ N such that L = {x | ∃p(|x|)y. (x, y) ∈ R}

For the induction step, i > 0 let L ∈ Σi+1P. We will show how to build a certificate y and a relation
R ∈ ΠiP suitable for the characterization. By definition

L ∈ NPΣiP = NPNP
Πi−1P

which is well-defined since i − 1 ≥ 0. This means that there is a polynomial-time oracle NTM M ? such
that if M ? is given an oracle for a ΣiP set A, L(MA) = L.
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We consider the various parts of the computation on input x for L. M ? has nondeterministic moves so
part of the certificate y for x will consist of the nondeterministic moves of M ?; the certificate y will also
contain the values of all the answers that M ? receives from the oracle for A. Let these parts of y be ỹ. Given
ỹ in polynomial time we can check that the computation of M ? given the oracles answers could follow the
nondeterministic moves and accept.

The problem is that we don’t know if the oracle answers purported to be according to A are correct.
Given that the computation of M ? is consistent with ỹ, we have fixed the polynomially many oracle queries
z1 . . . , zm, say, that will be made to the oracle for A. The rest of the certificate y will be certificates that
each of the answers given for A on these strings is actually correct.

We can verify each of the yes answers to A as follows: By applying the inductive hypothesis to A there
exists a set R′ ∈ Πi−1P (and a polynomial q) such that

zi ∈ A⇔ ∃q(|x|)yi.(zi, yi) ∈ R′

If the answer to zi ∈ A is yes then we include this yi in the certificate y. Since R′ ∈ Πi−1P ⊆ ΠiP the
algorithm for R can simply check that (zi, yi) ∈ R′ for each query zi to A that is answered yes.

If the answer to whether or not zi ∈ A is no then zi ∈ A ∈ ΠiP. Thus the new ΠiP machine R will
check ỹ, yi if the answer was yes, and zi directly if the answer for zi was no.

Corollary 2.3. L ∈ Πi+1P if and only if there is a relation R ∈ Σi+1P and polynomial p : N → N such
that L = {x| ∀p(|x|)y. (x, y) ∈ R}.

Corollary 2.4. L ∈ ΣiP if and only if there is a polynomial-time computable set R and polynomial p : N→
N such that

L = {x| ∃p(|x|)y1∀p(|x|)y2 · · ·Qyi. (x, y1, y2, . . . , yi) ∈ R}

where Q =

{
∃p(|x|) if i is odd,

∀p(|x|) if i is even.

2.2.1 Some ΣiP- and ΠiP-complete Problems

Definition 2.4. Define
ΣiTQBF = {〈ψ〉| ψ ∈ TQBF and the quantifiers of ψ are of the form

−→∃ y1
−→∀ y2 · · ·QykψQ};

i.e. there are k groups of alternating quantifiers beginning with ∃. Similarly we can define ΠiTQBF with k
groups of alternations beginning with ∀.

Theorem 2.5. For i ≥ 1, ΣiTQBF is ΣiP-complete and ΠiTQBF is ΠiP-complete.

Proof Sketch. We apply the characterizations of ΣiP and ΠiP from Corollary 2.4. The quantifiers match up
perfectly except that the polynomial-time computable set R has been replaced by a simple Boolean formula.
We cannot in general replace polynomial-time computation by Boolean formulas however, we can replace
it in a way that is similar to the tableau from Cook’s proof of the NP-completeness of SAT.

First suppose that the last quantifier for the complexity class is an ∃ quantifier. We can add additional
Boolean variables z that represent the internal states of the computation of R and create a formula ϕ such
that (x, y1, . . . , yi) ∈ R if and only if ∃zϕ(x, y1, . . . , yi, z). Since the last quantifier was already an ∃
quantifier we can append z to it and simulate the formula.
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If the last quantifier for the complexity class is a ∀ quantifier then we use the same internal variables z
except that the formula for R is now ∀z(ϕ′(x, y1, . . . , yi, z) → ϕ′′(z)) where ϕ′ ensures that z is a correct
computation on input (x, y1, . . . , yi) and ϕ′′ ensures that z is accepting. In this case the ∀z merges with the
last ∀ in the alternation.

2.2.2 Hierarchy Collapse

Lemma 2.6. If ΣkP = ΠkP then PH = ΣkP ∩ΠkP

Proof. We’ll show that assumption implies that Σk+1P = ΣkP which will suffice. Let A ∈ Σk+1P. There-
fore, there is some polynomial-time R and polynomial p such that

A = {x| ∃p(|x|)y1 ∀p(|x|)y2 · · ·Qyk+1. (x, y1, y2, . . . , yk+1) ∈ R︸ ︷︷ ︸ }.

∈ ΠkP = ΣkP

Therefore there is some polynomial-time relation R′ and polynomial p′ such that A can be expressed as

A = {x| ∃p(|x|)y1∃p
′(|x|)y′1︸ ︷︷ ︸ ∀p′(|x|)y′2 · · ·Qp′(|)y′k. (x, y1, y

′
1, y

′
2, . . . , y

′
k) ∈ R′}

∃p′′(|x|)(y1, y
′
1)

From which it follows that A ∈ ΣkP.

If this happens we say that PH collapses to the k-th level.

2.2.3 A Natural Problem in Π2P

Definition 2.5. Let MINCIRCUIT = {〈C〉| C is a circuit that is not equivalent to any smaller circuit}.

Note that 〈C〉 ∈ MINCIRCUIT ⇔ ∀〈D〉, size(D) < size(C),∃y s.t. D(y) 6= C(y) Thus MINCIRCUIT

is in Π2P. It is still open if it is in Σ2P or if it is Π2P-complete.

2.3 Non-uniform Complexity

The definitions of Turing machines yield finite descriptions of infinite languages. These definitions are uni-
form in that they are fixed for all input sizes. We now consider some definitions of non-uniform complexity
classes.

2.3.1 Circuit Complexity

Definition 2.6. Let Bn = {f | f : {0, 1}n → {0, 1}}. A basis Ω is defined as a finite subset of
⋃
n Bn.

Definition 2.7. A Boolean circuit over basis Ω is a finite directed acyclic graph C each of whose nodes is

• a source node labelled by either an input variable in {x1, x2, . . .} or constant ∈ {0, 1}, or
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• a node of in-degree d > 0 labeled by a gate function g ∈ Bd ∩Ω,

and which has one designated output node (gate). A circuit C has two natural measures of complexity, its
size, size(C), which is the number of gates in C and its depth, depth(C) which is the length of the longest
path from an input (source) to the output node of C .

Typically the elements of Ω we use are symmetric and unless otherwise specified we will assume the
so-called De Morgan basis Ω = {∧,∨,¬} ⊆ B1 ∪ B2.

Definition 2.8. C is defined on {x1, x2, . . . , xn} if its input variables are contained in {x1, x2, . . . , xn}. C
defined on {x1, x2, . . . , xn} computes a function f ∈ Bn in the obvious way.

Definition 2.9. A circuit family C is an infinite sequence of circuits {Cn}∞n=0 such that Cn is defined on
{x1, x2, . . . , xn}.

Circuit family C has size S(n), depth d(n), iff for each n

size(Cn) ≤ S(n)

depth(Cn) ≤ d(n).

Circuit family C decides or computes a language A ⊆ {0, 1}∗ iff for every input x ∈ {0, 1}∗, C|x|(x) =
1⇔ x ∈ A.

Definition 2.10. We say A ∈ SIZE(S(n)) if there exists a circuit family over the De Morgan basis of size
S(n) that computes A. Similarly we define A ∈ DEPTH(d(n)).

POLYSIZE =
⋃

k

SIZE(nk + k)

Our definitions of size and depth complexity classes somewhat arbitrarily care about constant factors.
For Turing machines we are stuck with them because alphabet sizes are variables but for circuits the com-
plexity does not involve such natural constant factors. (We may regret decision this later!)

Remark. ∃A ∈ POLYSIZE such that A is not decidable.
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Randomized Computation and the Polynomial-time
Hierarchy

April 4, 2004
Lecturer: Paul Beame

Notes: Ethan Phelps-Goodman

3.1 Undecidable Languages in POLYSIZE

By the proof of the Cook-Levin theorem we know that all languages in P have polynomial size circuits.
The converse is not true, however. In fact, there are languages with polynomial size circuits that are not
decidable. For example,

A = {1〈M,x〉 | Turing machine M halts on input x} ∈ SIZE(n)

where 1〈M,x〉 denotes the unary encoding of the binary representation of machine M and input x. The
construction of the circuit is as follows: Each input size corresponds to a particular machine and input.
If the machine would halt on this input, then the circuit consists of the AND of all input variables. If the
machine does not halt on the input then the circuit’s output gate is always 0. This seemingly strange situation
arises from the way we have defined circuit families. In particular, you are allowed to use an unbounded
amount of computation to construct each particular circuit. This property is called non-uniformity.

(In a uniform circuit family each circuit can be built (or the structure of the gates in its underlying
graph can be decided) in some small time-bounded or space-bounded class. There are different notions of
uniform circuit classes depending precisely on what notion is used. Common examples used are log-space,
or polynomial time.)

In fact, even constant-size circuits can decide undecidable languages: For example,

A = {x ∈ {0, 1}∗ | the |x|th TM M|x| halts on input 1|x|} ∈ SIZE(1).

3.2 Turing Machines with Advice

Last lecture introduced non-uniformity through circuits. An alternate view of non-uniformity uses Turing
machines with an advice tape. The advice tape contains some extra information that depends only on the
length of the input; i.e., on input x, the TM gets (x, α|x|).

Definition 3.1. TIME(T (n))/f(n) = {A | A is decided in time O(T (n)) by a TM with advice sequence
{αn}∞n=0 such that |αn| is O(f(n))}.

12
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Now we can define the class of languages decidable in polynomial time with polynomial advice:

Definition 3.2. P/poly =
⋃
k,l TIME(nk)/nl

Lemma 3.1. P/poly= POLYSIZE

Proof.
POLYSIZE ⊆ P/poly: Given a circuit family in POLYSIZE, produce a TM with advice M that interprets
its advice string as the description of a circuit and evaluates that circuit on the input. Use {〈cn〉}∞n=0 as the
advice strings. These are polynomial size and the evaluation is polynomial time.

P/poly ⊆ POLYSIZE: Given a TM M and a sequence of advice strings {αn}∞n=0, use the tableau construc-
tion from the proof of the Cook-Levin Theorem to construct a polynomial-size circuit family with the advice
strings hard-coded into the input.

Typically, people tend to use the equivalent P/poly rather than POLYSIZE to describe the complexity
class since it emphasizes the fact that it is the natural non-uniform generalization of P.

3.3 Probabilistic Complexity Classes

Definition 3.3. A probabilistic Turing machine is an NTM where each configuration has exactly one or two
legal next moves. Steps with two moves are called coin flip steps. By viewing each such step as the flip of
a fair coin we define the probability of a branch b being executed is Pr[b] = 2−k, where k is the number of
coin flip steps along branch b. Then we define the probability of acceptance as:

Pr[M accepts w] =
∑

branches b on which M accepts w

Pr[b]

and Pr[M rejects w] = 1− Pr[M accepts w].

Probabilistic TMs can also be viewed as ordinary multi-tape TMs with an extra read-only coin flip tape.
If r is the string of coin flips and machine M runs in time T (n) then |r| ≤ T (n). Now we can write the
answer of M on x as a function M(x, r) which equals 1 if M accepts x given random string r.

We can now define probabilistic complexity classes.

Definition 3.4. Randomized Polynomial Time: A language A ∈ RP iff there exists a probabilistic polyno-
mial time TM M such that for some ε < 1,

1. ∀w ∈ A, Pr[M accepts w] ≥ 1− ε.

2. ∀w /∈ A, Pr[M accepts w] = 0.

The error, ε, is fixed for all input size. RPis the class of problems with one-sided error (ie. an accept
answer is always correct, whereas a reject may be incorrect.) We can also define coRP, which has one-sided
error in the other direction. The following class encompasses machines with two-sided error:

Definition 3.5. Bounded-error Probabilistic Polynomial Time: A language A ∈ BPP iff there exists a
probabilistic TM M running in polynomial time such that for some ε < 1/2:
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1. ∀w ∈ A, Pr[M accepts w] ≥ 1− ε

2. ∀w /∈ A, Pr[M rejects w] ≥ 1− ε

We will slightly abuse notation and conflate languages and their characteristic functions; i.e., for a
language A,

A(w) =

{
1 if w ∈ A
0 if w /∈ A.

Using this we can say that A ∈ BPP iff there is some probabilistic polynomial-time TM M such that

Pr[M(w, r) = A(w)] ≥ 1− ε.

We will also define a zero-sided error complexity class:

Definition 3.6. Zero-error Probabilistic Polynomial Time: ZPP = RP ∩ coRP

The motivation for this terminology is the following lemma.

Lemma 3.2. IfA ∈ ZPP then there is a probabilistic TMM such that L(M) = A and the expected running
time of M is polynomial.

Proof. Let M1 be an RP machine for A, and M2 be a coRP machine for A; i.e., an RP machine for A. M
repeatedly runs M1 and M2 alternately until one accepts. If M1 accepts, then accept. If M2 accepts then
reject. Let ε = max{ε1, ε2}. We expect to have to run 1

1−ε trials before one accepts. Thus M decides A in
polynomial expected time.

The last probabilistic complexity class is much more powerful:

Definition 3.7. Probabilistic Polytime: A ∈ PP iff there is a probabilistic polynomial time TMM such that

Pr[M(w, r) = A(w)] > 1/2.

Here the error is allowed depend on the input size and be exponentially close to 1/2.

Remark. Running a polynomial time experiment using a machine witnessing that A ∈ PP will in general
not be enough to tell whether or not an input x ∈ A or not because the difference between acceptance and
rejection probabilities may be exponentially close to 1.

3.4 Amplification

The following lemma shows that in polynomial time we can reduce errors that are polynomially close to 1/2
to exponentially small values.

Lemma 3.3. Let M be a probabilistic TM with two-sided error ε = 1/2 − δ running in time T (n). Then
for any m > 0 there is a probabilistic polytime TM M ′ with runtime at most O(m

δ2
T (n)) and error at most

2−m.
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Proof. M ′ simply runs M some number k times on independently chosen random strings and takes the
majority vote of the answers. For convenience we assume that k is even. The error is:

Pr[M ′(x) 6= A(x)] = Pr[≥ k/2 wrong answers on x]

=

k/2∑

i=0

Pr[k/2 + i wrong answers of M on x]

≤
k/2∑

i=0

(
k

k/2 + i

)
εk/2+i(1− ε)k/2−i

≤
k/2∑

i=0

(
k

k/2 + i

)
εk/2(1− ε)k/2 since ε ≤ 1− ε for ε ≤ 1/2

≤ 2kεk/2(1− ε)k/2

= [4(1/2 − δ)(1/2 + δ)]k/2

= (1− 4δ2)k/2

≤ e−2δ2k since 1− x ≤ e−x

≤ 2−m for k = m/δ2.

A similar approach can be used with an RP language, this time accepting if any of the k trials accept.
This gives an error of εk, where we can choose k = m

log( 1
ε
)
.

3.5 Randomness vs. Advice

The following theorem show that randomness is no more powerful than advice in general.

Theorem 3.4 (Gill, Adleman). BPP ⊆ P/poly

Proof. Let A ∈ BPP. By the amplification lemma, there exists a BPP machine M for A and a polynomial
bound p such that for all x ∈ {0, 1}n ,

Pr
r∈{0,1}p(n)

[M(x, r) 6= A(x)] ≤ 2−2n

For r ∈ {0, 1}p(n) say that r is bad for x iff M(x, r) 6= A(x). Therefore, for all x ∈ {0, 1}n,

Pr
r

[r is bad for x] ≤ 2−2n

We say that r is bad if there exists an x ∈ {0, 1}n such that r is bad for x.

Pr[r is bad] = Pr[∃x ∈ {0, 1}n. r is bad for x]

≤
∑

x∈{0,1}n

Pr[r is bad for x]

≤ 2n2−2n

< 1.
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Thus Pr[r is not bad] > 0. Therefore there must exist an rn ∈ {0, 1}p(n) such that rn is not bad. Apply
this same argument for each value of n and use this sequence {rn}∞n=0 as the advice sequence to a P/poly

machine that decides A. Each advice string is a particular random string that leads to a correct answer for
every input of that length.

3.6 BPP and the Polynomial Time Hierarchy

Here we show that randomness ican be simulated by a small amount of alternation.

Theorem 3.5 (Sipser-Gacs, Lautemann). BPP ⊆ Σ2P ∩Π2P.

Proof. Note that BPP is closed under complement; so, it suffices to show BPP ⊆ Σ2P .
Let A ∈ BPP. Then there is a probabilistic polytime TM M and polynomial p such that for x ∈ {0, 1}n,

Pr
r∈{0,1}p(n)

[M(x, r) 6= A(x)] ≤ 2−n.

Define AccM (x) = {r ∈ {0, 1}p(n) |M(x, r) = 1}. In order to determine whether or not x ∈ A we need
to determine whether the set S = AccM (x) is large (nearly all of {0, 1}p(n)) or small (only an exponentially
small fraction of {0, 1}p(n)).

The basic idea of the method we use is the following: If a set S contains a large fraction of {0, 1}p(n
then a small number of “translations” of S will cover {0, 1}p(n). If S is a very small fraction of {0, 1}p(n)

then no small set of “translations” of S will suffice to cover {0, 1}p(n) .

The translation we will use is just bitwise exclusive or,⊕. We will use the following invertibility property
of ⊕: for s ∈ {0, 1}m , t ∈ {0, 1}m ,

b = s⊕ t⇐⇒ t = s⊕ b
For S ⊆ {0, 1}m , define S ⊕ t = {s⊕ t|s ∈ S}. Note that |S ⊕ t| = |S|.
Lemma 3.6 (Lautemann’s Lemma). Let S ⊆ {0, 1}m . If |S|/2m ≥ 1/2 then there exist t1 . . . tm ∈
{0, 1}m such that,

⋃m
j=1(S ⊕ tj) = {0, 1}m .

Thus the number of translations required is only linear in the number of bits in the size of the universe
from which S is chosen.

Proof. By probabilistic method. Let S satisfy the conditions of the lemma.

Fix a string b ∈ {0, 1}m . Choose t1 . . . tm uniformly and independently at random from {0, 1}m. For
any j ∈ {1, . . . ,m},

Pr[b ∈ S ⊕ tj] = Pr[tj ∈ S ⊕ b]
= Pr[tj ∈ S] since |S ⊕ tj| = |S|
≥ 1/2.

Therefore Pr[b /∈ S ⊕ tj ] < 1/2. Thus, by independence, the probability that b is not in any of the m
translations

Pr[b /∈
m⋃

j=1

(S ⊕ tj)] < 2−m.
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Thus

Pr[∃b ∈ {0, 1}m. b /∈
m⋃

j=1

(S ⊕ tj)] < 2m2−m = 1,

and so

Pr[∀b ∈ {0, 1}m. b ∈
m⋃

j=1

(S ⊕ tj)] > 0.

Therefore there exists a set t1 . . . tm such that the union of the translations of S by ti covers all strings in
{0, 1}m .

Now apply Lautemann’s Lemma with S = AccM (x) and m = p(n). If x /∈ A then only a 2−n fraction
of the random strings will be in AccM (x), and so m = p(n) translations will not be able to cover all of
{0, 1}p(n) . This gives us the following Σ2P characterization of A:

x ∈ A⇐⇒ ∃t1 . . . tp(|x|) ∈ {0, 1}p(|x|)∀p(|x|)r there is some j ∈ {1, . . . , p(|x|)} such that M(x, r⊕tj) = 1.

Note that there are only polynomial many j values to be checked, so these can be checked directly by the
machine in polynomial time.
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So far we have seen that circuits are quite powerful. In particular, P/poly contains undecidable problems,
and RP ⊆ BPP ⊆ P/poly. In this lecture, we will explore this relationship further, proving results that show
circuits are very unlikely to be super-powerful compared to uniform complexity classes.

Theorem 4.1. A. (Shannon, 1949) “Most” Boolean functions f : {0, 1}n → {0, 1}, have circuit com-
plexity SIZE(f) ≥ 2n

n − φn, where φn is o
(

2n

n

)
. (More precisely, for any ε > 0 this holds for at least

a (1− ε) fraction of all Boolean functions.)

B. (Lupanov, 1965) Every Boolean function f : {0, 1}n → {0, 1} can be computed in SIZE(f) ≤
2n

n + θn, where θn is o
(

2n

n

)
.

Proof. A. The proof is a by a counting argument. Let Bn = {f : {0, 1}n → {0, 1}}, that is, the set of
all Boolean functions on n bits. |Bn| = 22n

. We will show that the number of circuits of size much
smaller than 2n/n is only a negligible fraction of |Bn|, proving the claim.

Let us compute the number of circuits of size at most S ≥ n+2 over {¬,∧,∨}. Note that the argument
we present works essentially unchanged for any complete basis of gates for Boolean circuits. What
does it take to specify a given circuit? A gate labeled i in the circuit is defined by the labels of its two
inputs, j and k (j = k for unary gates), and the operation g the gate performs. The input labels j and
k can be any of the S gates or the n inputs or the two constants, 0 and 1. The operation g can be any
one of the three Boolean operations in the basis {¬,∧,∨}. Adding to this the name i of the gate, any
circuit of size at most S can be specified by a description of length at most (S + n+ 2)2S3SS. Note,
however, that such descriptions are the same up to the S! ways of naming the gates. Hence, the total
number of gates of size at most S, noting that S! ≥ (S/e)S , is at most

(S + n+ 2)2S3SS

S!
≤ (S + n+ 2)2S(3e)SS

SS

=

(
S + n+ 2

S

)S

(3e (S + n+ 2))S S

=

(
1 +

n+ 2

S

)S

(3e (S + n+ 2))S S

≤
(
e

n+2
S 3e (S + n+ 2)

)S
S since 1 + x ≤ ex

< (6e2S)S+1 since we assumed S ≥ n+ 2.

18
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To be able to compute at least an ε fraction of all functions in Bn, we need

(6e2S)S+1 ≥ ε 22n

⇒ (S + 1) log2(6e
2S) ≥ 2n − log2(1/ε)

⇒ (S + 1)(5.5 + log2 S) ≥ 2n − log2(1/ε)

Hence, we must have S ≥ 2n/n − φn where φn is o(2n/n) to compute at least an ε fraction of all
functions in Bn as long as ε is 2−o(2

n). This proves part A of the Theorem.

B. Proof of this part is left as an exercise (see Problem 3, Assignment 1). Note that a Boolean function
over n variables can be easily computed in SIZE(n2n) by using its canonical DNF or CNF represen-
tation. Bringing it down close to SIZE(2n/n) is a bit trickier.

This gives a fairly tight bound on the size needed to compute most Boolean functions over n variables.
As a corollary, we get a circuit size hierarchy theorem which is even stronger than the time and space
hierarchies we saw earlier; circuits can compute many more functions even when their size is only roughly
doubled.

Corollary 4.2 (Circuit-size Hierarchy). For any ε > 0 and S1, S2 : N → N, if n ≤ (2 + ε)S1(n) ≤
S2(n)� 2n/n, then SIZE(S1(n)) ( SIZE(S2(n)).

Proof. Let m = m(n) be the maximum integer such that S2(n) ≥ (1 + ε/2) 2m/m. By the preconditions
of the Corollary, S1(n) ≤ (1 − ε/2) 2m/m and m � n. Consider the set F of all Boolean functions on
n variables that depend only on m bits of their inputs. By the previous Theorem, all functions in F can be
computed by circuits of size 2m/m+ o(2m/m) and are therefore in SIZE(S2(n)). On the other hand, most
of the functions in F cannot be computed by circuits of size 2m/m − o(2m/m) and are therefore not in
SIZE(S1(n)).

The following theorem, whose proof we will postpone until the next lecture, shows that circuits can
quite efficiently simulate uniform computation. Its corollaries will be useful in several contexts.

Theorem 4.3 (Pippenger-Fischer, 1979). If T (n) ≥ n, then TIME(T (n)) ⊆ ⋃
c SIZE(cT (n) log2 T (n)).

We now show that although P/poly contains undecidable problems, it is unlikely to contain even all
of NP. This implies that circuits, despite having the advantage of being non-uniform, may not be all that
powerful. We start with a simple exercise:

Theorem 4.4 (Karp-Lipton). If NP ⊆ P/poly, then PH = Σ2P ∩Π2P.

The original paper by Karp and Lipton credits Sipser with sharpening the result. The proof below which
uses the same general ideas in a slightly different way is due to Wilson.

Proof. Suppose to the contrary that NP ⊆ P/poly. We’ll show that this implies Σ2P = Π2P. From
Lemma 2.6 this will prove the Theorem.

Let L ∈ Π2P. Therefore there exists a polynomial-time computable set R and a polynomial p such that
L =

{
x | ∀p(|x|)y ∃p(|x|)z. (x, y, z) ∈ R

}
. The idea behind the proof is as follows. The inner relation in this

definition,
{
(x, y) | ∃p(|x|)z. (x, y, z) ∈ R

}
, is an NP language. NP ⊆ P/poly implies that there exists a
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polynomial size circuit family {CR} computing this inner relation. We would like to simplify the definition
of L using this circuit family. by

{
x | ∃〈CR〉 ∀p(|x|)y. CR correctly computes R on (x, y) and CR(x, y) = 1

}
.

This would put L in Σ2P, except that it is unclear how to efficiently verify that CR actually computes
the correct inner relation corresponding to R. (Moreover, the whole circuit family may not have a finite
specification.)

To handle this issue, we modify the approach and use self-reduction for NP to verify correctness of the
circuit involved. More precisely, we create a modified version of R suitable for self-reduction. Let

R′ =
{
(x, y, z′) | |z′|, |y| ≤ p(|x|) and ∃p(|x|)−|z′|z′′. (x, y, z′, z′′) ∈ R

}
.

Here z′ acts as a prefix of z in the earlier definition of R. Note that R′ ∈ NP since R is polynomial-time
computable. Therefore, by the assumption NP ⊆ P/poly, R′ is computed by a polynomial size circuit
family {Cn}∞n=0 with a polynomial size bound q : N → N. We, of course, can’t encode the whole circuit
family for showing L ∈ Σ2P. We use the fact that on input x, we only query R′ on inputs (x, y, z) of length
at most 2(|x|+ 2p(|x|)), say, assuming some reasonable encoding of the tuples.

Let Cpref ,|x| be the smallest prefix of {Cn}n that contains circuits corresponding to all input sizes that
are queried. The size of this is bounded some polynomial q ′ that involves the composition of p and q. We
claim that there exists a polynomial-time algorithm M that given x, y and Cpref ,|x| as input, either

a. outputs a z such that (x, y, z) ∈ R, in which case there exists a z satisfying this property, or

b. fails, in which case either Cpref ,|x| is not a prefix of {Cn}∞n=0 for computing the NP set R′, or no such
z exists.

We prove the claim by describing an algorithm M that behaves as desired. It will be clear that M runs in
polynomial time.

Algorithm M : On input x, y, Cpref ,|x|,
Let z′ be the empty string
If Cpref ,|x|(x, y, z′) = 0 then fail
While (x, y, z′) 6∈ R and |z′| ≤ p(|x|)

If Cpref ,|x|(x, y, z′0) = 1
then z′ ← z′0
else z′ ← z′1

EndIf
EndWhile
If (x, y, z′) ∈ R

then output z′

else fail
EndIf

End

Given M satisfying the conditions of our claim above, we can characterize the language L as follows:
x ∈ L iff ∃q′(|x|)〈Cpref ,|x|〉 ∀p(|x|)y. Mdecision (x, y, 〈Cpref ,|x|〉). Here Mdecision denotes the decision version
of M that outputs true or false rather than z ′ or fail. Since M is polynomial-time computable, this shows
that L ∈ Σ2P. Note that we were able to switch ∃ and ∀ quantifiers because Cpref ,|x| doesn’t depend on y.
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This proves that Π2P ⊆ Σ2P. By the symmetry between Σ2P and Π2P, this implies Σ2P ⊆ Π2P,
making the two classes identical and finishing the proof.

The following exercise uses the same kind of self reduction that we employed in the above argument:

Exercise 4.1. Prove that NP ⊆ BPP implies NP = RP.

We now prove that even very low levels of the polynomial time hierarchy cannot be computed by circuits
of size nk for any fixed k. This result, unlike our previous Theorem, is unconditional; it does not depend
upon our belief that the polynomial hierarchy is unlikely to collapse.

Theorem 4.5 (Kannan). For all k, Σ2P ∩Π2P 6⊆ SIZE(nk).

Proof. We know that SIZE(nk) ( SIZE(nk+1) by the circuit hierarchy theorem. To prove this Theorem,
we will give a problem in SIZE(nk+1) and Σ2P ∩Π2P that is not in SIZE(nk).

For each n, letCn be the lexically first circuit on n inputs such that size(Cn) ≥ nk+1 and Cn is minimal;
i.e., Cn is not equivalent to a smaller circuit. (For lexical ordering on circuit encodings, we’ll use ≺.) Let
{Cn}∞n=0 be the corresponding circuit family and letA be the language decided by this family. By our choice
of Cn, A 6∈ SIZE(nk). Also, by the circuit hierarchy theorem, size(A) is a polynomial ≤ (2 + ε)nk+1 and
the size of its encoding |〈A〉| ≤ nk+3, say. Note that the factor of (2 + ε) is present because there may not
be a circuit of size exactly nk+1 that computes A, but there must be one of size at most roughly twice this
much.

Claim: A ∈ Σ4P.
The proof of this claim involves characterizing the set S using a small number of quantifiers. By definition,
x ∈ A if and only if

∃p(|x|)〈C|x|〉.
(
size(C|x|) ≥ |x|k+1

∧ ∀p(|x|)〈D|x|〉. [size(D|x|) < size(C|x|)→ ∃|x|y. D|x|(y) 6= C|x|(y)]∧ ∀p(|x|)〈D|x|〉. [ [(〈D|x|〉 ≺ 〈C|x|〉) ∧ (size(D|x|) ≥ |x|k+1)]→
∃p(|x|)〈E|x|〉. [size(E|x|) < size(D|x|) ∧ ∀|x|z. D|x|(z) = E|x|(z)] ]

)

The second condition states that the circuit is minimal, i.e., no smaller circuit D |x| computes the same
function as C|x|. The third condition enforces the lexically-first requirement; i.e., if there is a lexically-
earlier circuit D|x| of size at least |x|k+1, then D|x| itself is not minimal as evidenced by a smaller circuit
E|x|. When we convert this formula into prenex form, all quantifiers, being in positive form, do not flip. This

gives us that x ∈ A iff ∃〈C|x|〉︸ ︷︷ ︸
∀〈D|x|〉︸ ︷︷ ︸

∃|x|y ∃〈E|x|〉︸ ︷︷ ︸
∀|x|z︸︷︷︸ . φ for a certain quantifier free polynomially

decidable formula φ. Hence A ∈ Σ4P.

This proves the claim and imples that Σ4P 6⊆ SIZE(nk). We finish the proof of the Theorem by analyz-
ing two possible scenarios:

a. NP ⊆ P/poly. In this case, by the Karp-Lipton Theorem, A ∈ Σ4P ⊆ PH = Σ2P∩Π2P because the
polynomial time hierarchy collapses, and we are done.

b. NP 6⊆ P/poly. In this simpler case, for some B ∈ NP, B 6∈ P/poly. This implies B 6∈ SIZE(nk)
and proves, in particular, that Σ2P ∩Π2P 6⊆ SIZE(nk).

This finishes the proof of the Thoerem. We note that unlike the existential argument (the witness is
either the language A or the language B), one can also define a single language A ′ witnessing it where A′

is a hybrid language between A and a diagonal language in NP.
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5.1 Circuit Complexity and Uniform Complexity

We will conclude our look at the basic relationship between circuit complexity classes and uniform complex-
ity classes. First, we will prove that circuits can efficiently solve problems in uniform complexity classes.

Theorem 5.1 (Pippenger, Fischer). If T (n) ≥ n, then TIME(T (n)) ⊆ ⋃
SIZE(kT (n) log2 T (n)).

First, consider the following variant of the traditional k-tape TM:

Definition 5.1. A multitape TM is oblivious if the motion of each head depends only upon the length of its
input.

Note that an oblivious TM’s motion has nothing to do with the input itself; given an input of size n, the
machine’s head(s) will perform the same series of motions regardless of the original contents of the tape.
We will prove two lemmas from which Theorem 5.1 follows immediately.

The first is a more careful version of the original result of Hennie and Stearns showing that k-tape
TMs can be efficiently simulated by 2-tape TMs. The key extension is that the resulting TM can be made
oblivious.

Lemma 5.2 (Hennie-Stearns, Pippenger-Fischer). For T (n) ≥ n, if A ∈ TIME(T (n)) then A is recog-
nized by a 2-tape deterministic oblivious TM in time O(T (n) log T (n)).

The second lemma shows that oblivious TMs can be efficiently simulated by circuits.

Lemma 5.3. [Pippenger-Fischer] If A ⊆ {0, 1}∗ is recognized by a 2-tape deterministic oblivious TM in
time O(T (n)), then A ∈ ⋃

k SIZE(kT (n)) (i.e. size linear in T (n).

First we will prove Lemma 5.3 whose proof motivates the notion of oblivious TMs.

Proof of Lemma 5.3. Consider the tableau generated in the standard proof of the Cook-Levin theorem for
an input of size n for a Turing machine running in O(T (n). The tableau yields a circuit of size O(T 2(n)),
with “windows” of size 2× 3. However, on any given input the TM head will only be in one cell at a given
time step; i.e., one cell per row in the tableau. With a normal TM, though, it is not possible to anticipate
which cell that will be.

22
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= position of TM head
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Figure 5.1: Representing an oblivious TM using constant-size windows
.

Since our TM M is oblivious, we know the path that the head shall take, and where it will be at each
timestep, simply by knowing the length of the input. We know if and when a given cell on the tape will
be revisited, and can ignore it at other times. Thus we can use “windows” containing simply the contents
of a cell from the last time it was active and the contents of the previous cell visited to see what the head
moves, to represent each step taken by that head, and all other cells in the tableau will be irrelevant to that
step in the computation. This is represented in Figure 5.1. The subsequent configuration resulting from any
configuration can thus be computed by a circuit of constant size. Since the tableau is of height T (n), we can
express the tableau in size O(T (n)).

Now, we prove Lemma 5.2, that if A ∈ TIME(T (n)), then A is recognized by a 2-tape deterministic
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Figure 5.2: 4-track oblivious simulation of a TM tape.
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Figure 5.3: The simulation in Figure 5.2 when the head moves left. Block B1 is bunched and B−1 stretched.

and oblivious TM in time O(T (n) log T (n)).

Proof of Lemma 5.2. We will build a 2-tape TM M ′ which will consist of two tapes: one holding all the
contents of M ’s tapes, and one “work tape”.

Traditionally, we think of a TM as having a tape which the head moves back on forth on. For this proof,
it may help to instead think of the TM head as being in a fixed position and each of the tapes as moving
instead, similar to a typewriter carriage (if anyone remembers this ancient beasts!). Of course a tape would
be an infinitely long typewriter carriage which would be too much to move in a single step. Instead, we think
of moving the tapes back and forth, but we may not do so smoothly; sometimes we will be “bunching up”
a tape, such that some cells may be effectively layered on top of others and other parts will be “stretched”,
parts that are not bunched or stretched are “smooth”.

It will be convenient to concentrate on simulating one tape of M at a time. In reality we will allocate
several tracks on tape 1 of M ′ to each of the k-tapes. It is simplest also to imagine that each of M ’s tapes is
2-way infinite, although M ′ will have only 1-way infinite tapes.

More precisely, imagine the scenario modeled in Figure 5.2. For each tape of M , we have four tracks –
two for those cells to the left of the current cell, and two for those to the right of the current cell. The “outer”
tracks will contain the contents of the tape when that portion of the tape is smooth; the “inner” tracks will
contain portions of the tape that are bunched up. The current cell is always on the left end of the set of
tracks. The tracks wrap around as the head of M moves.

We will divide the tracks into “blocks”, where each block will consist of a portion of the two upper or
lower tracks. Block B0 contains the current cell (at the left end of the tape); block B1 is the lower half of
the the cell immediately to the right of block B0 and has capacity for up to 2 cells of M ; block B2 is the
lower half of the next 2 cells to the right of that with capacity for up to 4 cells of M , etc. In general, block
Bi has contains the lower half of the next 2i−1 cells starting at cell 2i−1 and has capacity for 2i cells of M .
Block B−i for i ≥ 1 contains the corresponding upper half of cells of M ′ whose lower half is the block Bi.
In general, for block Bi and Bj , if i < j then the contents of block Bi will be to the left of those for block
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Figure 5.4: The smoothing of blocks B2 and block B−2.

Bj . The outer tracks of block Bi or B−i will contain contents of cells of M that are closer to the cell in
block B0 than the inner tracks.

In our simulation, when we wrap the tracks around, we permit the tape to “bunch up” within a block;
when this happens, the contents of the cell of M that would ordinarily be in the outer track of the next block
is now placed in the next free cell on the inner track of the current block. We can later undo this by moving
the bunched-up data in block Bi into Bi+1; this process is called smoothing the block. Similarly, a block
Bi may be stretched, so that it contains fewer than 2i−1 cells from the tape; if other data is pushed into it,
the vacant area on the track is filled. The tape is smoothed when it is no longer stretched. Figure 5.3 shows
the movement of the tracks in our simulation depicted in Figure 5.2 when the head moves left; block B1 is
bunched and block B−1 stretched. In Figure 5.4, we see the smoothing of blocks B2 and B−2 on such a
simulation.

We maintain the following invariants after simulating each time step t of the simulation:

A. Every block Bi with |i| > dlog2 te+ 1 is smooth.

B. Bi +B−i = 2|i| i.e. if Bi is bunched, B−i is stretched an equal amount.

C. Each Bi consists of consecutive elements of the tape of M .

D. If t is a multiple of 2i then blocks Bi, Bi−1, Bi−2..., B1, B0, B−1, B−2, ...B−i are smooth.

To maintain our invariants, whenever t is 2it′ for some odd t′, we smooth out blocks B−i...Bi by bor-
rowing from or adding entries to Bi+1 and B−(i+1). We do this by copying the contents of all the cells
in B1, . . . , Bi, Bi+1 onto tape 2 and then writing them back into those cells only on the outer tracks, ex-
cept, possibly, for block Bi+1. The same is done for blocks B−1, . . . , B−(i+1). We need to argue that this
smoothing can be accomplished.

After smoothing blocks B−(i+1), . . . , B(i+1) when t is a multiple of 2i+1, we may simulate M for up
2i − 1 steps without accessing blocks Bi+1 or B−(i+1). On the 2i-th step the number of entries that will
need to appear in blocks B0, B1, . . . , Bi (or B−i, Bi−1, . . . , B0) is between 0 and 2i+1 since this number
can have changed by at most 2i during this time. Since Bi+1 has remained smooth during this time, there
are precisely 2i occupied cells in Bi+1 and space for 2i more inputs. Therefore there enough entries in Bi+1

to borrow to fill the up to 2i spaces in blocks B0, . . . , Bi that need to be filled, or enough space to take the
overflow from those blocks. A similar argument applies to blocks B−i, . . . , B0. Therefore this smoothing
can be accomplished. By carefully making sure that the inner and outer tracks are scanned whether or not
they contain entries, the smoothing can be done with oblivious motion.

How much does the smoothing cost when t is a multiple of 2i but not 2i+1? It will be less than or
equal to c2i steps in tota for some constant c. We will perform smoothing 1

2i of the time, with cost c2i per

smoothing. Therefore, the total time will be
∑

i≤dlog2 T (n)e+1 c2
i T (n)

2i which is O(T (n) log T (n).
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We can use the proof of THeoremm 5.1 to prove the following theorem:

Theorem 5.4 (Cook 83). If T (n) ≤ n and L ∈ NTIME(T (n)) then there exists a reduction that maps
input x to a 3-CNF formula φx in O(T (n) log T (n)) time and O(log T (n)) space such that φx has size
O(T (n) log T (n)) and x ∈ L⇔ φx ∈ 3SAT .

Proof. φx is usual 3-CNF based on CIRCUIT-SAT. Check that producing the circuit in the proof of the
previous lemmas can be done in O(T (n) log T (n)) time and O(log T (n)) space.

5.2 Function Complexity Classes, Counting Problems, and #P

We will now define some complexity classes of numerical functions on input strings rather than decision
problems.

Definition 5.2. The class FP is the set of all functions f : {0, 1}∗ → N that are computable in polynomial
time.

Among the algorithmic problems representable by such functions are “counting problems” pertaining to
common decision problems. For example,

Definition 5.3. Define #3-SAT as the problem of counting the number of satisfying assignments to a given
3-SAT formula φ.

Remark. Note that if we can solve #3-SAT in polynomial time, then clearly we can solve any NP-complete
problem in polynomial time and thus P = NP.

We can define new complexity classes to represent such counting problems:

Definition 5.4. For any complexity class C, let #C be the set of all functions {f : {0, 1}∗ → N for which
there exists R ∈ C and a polynomial p : N → N such that f(x) = #{y ∈ {0, 1}p(|x|) : (x, y) ∈ R} =
|{y ∈ {0, 1}p(|x|) : (x, y) ∈ R}|.

In particular, for C = P, we obtain

Definition 5.5. Define the class #P to be the set of all functions {f : {0, 1}∗ → N for which there exists
R ∈ P and a polynomial p : N → N such that f(x) = #{y ∈ {0, 1}p(|x|) : (x, y) ∈ R} = |{y ∈
{0, 1}p(|x|) : (x, y) ∈ R}|.

5.2.1 Function classes and oracles

Let us consider the use of oracle TMs in the context of function classes. For a language A, let FPA be the
set of functions f : {0, 1}∗ → N that can be solved in polynomial time by an oracle TM M ? that has A as
an oracle.

Similarly, we can define oracle TM’s M ? that allow functions as oracles rather than sets. In this case,
rather than receiving the answer from the oracle by entering one of two states, the machine can receive a
binary encoded version of the oracle answer on an oracle answer tape. Thus for functions f : {0, 1}∗ → N

and a complexity class C for which it makes sense to define oracle versions, we can define Cf , and for a
complexity class FC′ of functions we can define CFC′

=
⋃
f∈FC′ Cf .
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Figure 5.5: Gadgets used in reduction of #HAM-CYCLE to #CYCLE.

Definition 5.6. A function f is #P-complete iff

A. f ∈ #P.

B. For all g ∈ #P, g ∈ FPf .

As 3-SAT is NP-complete, #3-SAT is #P-complete:

Theorem 5.5. #3-SAT is #P-complete.

Proof. Cook’s reduction is “parsimonious”, in that it preserves the number of solutions. More precisely, in
circuit form there is precisely one satisfying assignment for the circuit for each NP witness y. Moreover,
the conversion of the circuit to 3-SAT enforces precisely one satisfying assignment for each of the extension
variables associated with each gate.

Since the standard reductions are frequently parsimonious, and can be used to prove #P-completeness
of many counting problems relating to NP-complete problems. In some instances they are not parsimonious
but can be made parsimonious. For example we have the following.

Theorem 5.6. #HAM-CYCLE is #P-complete.

The set of #P-complete problems is not restricted to the counting versions of NP-complete problems,
however; interestingly, problems in P can have #P-complete counting problems as well. Consider #CY-
CLE, the problem of finding the number of directed simple cycles in a graph G. (The corresponding problem
CYCLE is in P).

Theorem 5.7. #CYCLE is #P-complete.

Proof. We reduce from #HAM-CYCLE. We will map the input graph G for #HAM-CYCLE to a graph G ′

for #CYCLE. Say G has n vertices. G′ will have a copy u′ of each vertex u ∈ G, and for each edge (u, v) ∈
G the gadget in Figure 5.5 will be added between u′ and v′ inG′. This gadget consists ofN = ndlog2 ne+1
layers of pairs of vertices, connected to u and v and connected by 4N edges within. The number of paths
from u′ to v′ inG′ is 2N > nn. Each simple cycle of length ` inG yields 2N` simple cycles inG′. IfG has k
Hamiltonian cycles, there will be k2Nn corresponding simple cycles in G′. G has at most nn simple cycles
of length ≤ n− 1. The total number of simple cycles in G′ corresponding to these is ≤ nn2N(n−1) < 2Nn.
Therefore we compute #HAM-CYCLE(G) = b#CYCLE(G′)/2Nne.

The following theorem is left as an exercise:

Theorem 5.8. #2-SAT is #P-complete.
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5.2.2 Determinant and Permanent

Some interesting problems in matrix algebra are represented in function complexity classes. Given an n×n
matrix A, the determinant of A is

det(A) =
∑

σ∈Sn

(−1)sgn(σ)
n∏

i=1

ai,σ(i),

where Sn is the set of permutations of n and sgn(σ) is the number of trnaspositions required to produce σ
modulo 2. This problem is in FP.

The sgn(σ) is apparently a complicating factor in the definition of det(A), but if we remove it we will
see that the problem actually becomes harder. Given an n× n matrix A, the permanent of A is equal to

perm(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i).

Let 0-1PERM be the problem of finding the permanent of a 0-1 matrix. When we continue, we will prove
the following theorem:

Theorem 5.9 (Valiant). 0-1PERM is #P-complete.

The following is an interesting interpretation of the permanent. We can view the matrix A the adjacency
matrix of a weighted bipartite graph on vertices [n]× [n] where [n] = {1, . . . , n}. Each σ ∈ Sn corresponds
to a perfect matching of this graph. If we view the weight of a matching as the product of the weights of its
edges the permanent is the total weight of all matchings in the graph.

In particular a 0-1 matrix A corresponds to an unweighted bipartite graph G for which A is the adja-
cency matrix, and Perm(A) represents the total weight of all perfect matchings on G. Let #BIPARTITE-
MATCHING be the problem of counting all such matchings. Thus we obtain the following corollary as
well:

Corollary 5.10. #BIPARTITE-MATCHINGS is #P-complete
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In this lecture, we will prove that the problem of finding the permanent of a 0-1 matrix is #P-complete.
Given an n× n, 0-1 matrix A, it can be viewed as an adjacency matrix of a directed graph G on n vertices
(with possibly self-loops). It is easy to see that the permanent of A is the number of cycle-covers of G. (A
cycle-cover is a sub-graph consisting of a union of disjoint cycles that cover the vertices of G).

The hardness of 0-1PERM is established by showing that the problem of finding the number of cycle-
covers of G is hard.

Theorem 6.1 (Valiant). 0-1PERM is #P-complete.

Proof. For a directed graph G, a cycle-cover of G is a union of simple cycles of G that contains each vertex
precisely once. For a weighted, directed graph G, with weight matrix A, we can also view

PERM(G) = PERM(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i)

as the total weight of all cycle-covers of G, where the weight of a cycle-cover is the product of the weights
of all its edges. This interpretation corresponds naturally to the representation of a permutation σ as a union

of directed cycles. For example, if σ =

(
1 2 3 4 5 6
3 4 5 2 1 6

)
∈ S6 then σ can also be written in cycle

form as (1 3 5)(2 4)(6) where the notation implies that each number in the group maps to the next and the
last maps to the first. (See Figure 6.1.) Thus, for an unweighted graph G, PERM(G) is the number of
cycle-covers of G.

1

2 4 6

3

5

Figure 6.1: Directed graph corresponding to (1 3 5)(2 4)(6)

Proof Idea: We will reduce #3-SAT to 0-1PERM in two steps. Given any 3-SAT formula ϕ, in the first
step, we will create a weighted directed graph G′ (with small weights) such that

PERM(G′) = 43m ·#(ϕ)

29
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where m is the number of clauses in ϕ. In second step, we will convert G′ to an unweighted graph G such
that PERM(G′) = (PERM(G) mod M), where M will only have polynomially many bits.

First, we will construct G′ from ϕ. The construction will be via gadgets. The VARIABLE gadget is
shown in Figure 6.2. All the edges have unit weights. Notice that it contains one dotted edge for every
occurrence of the variable in ϕ. Each dotted edge will be replaced by a subgraph which will be described
later. Any cycle-cover either contains all dotted edges corresponding to a positive occurrence (and all self-
loops corresponding to negative occurrence) or vice versa.

true

false

#arrows = 
#positive occurances

#arrows = 
#negative occurances

Figure 6.2: The VARIABLE gadget

The CLAUSE gadget is shown in Figure 6.3. It contains three dotted edges corresponding to three
variables that occur in that clause. All the edges have unit weights. This gadget has the property that

A. in any cycle-cover, at least one of the dotted edges is not used, and

B. for any non-empty subset S of the dotted edges there is precisely one cycle-cover of the gadget that
includes all dotted edges but those in S. (See Figure 6.4.)

Now, given any clause C and any literal x contained in it, there is a dotted edge (u, u ′) in the CLAUSE
gadget for the literal and a dotted edge (v, v ′) in the appropriate side of VARIABLE gadget for the clause.
These two dotted edges are replaced by an XOR gadget shown in Figure 6.5.

The XOR gadget has the property that the total contribution of all cycle-covers using none or both of
(u, u′) and (v, v′) is 0. For cycle-covers using exactly one of the two, the gadget contributes a factor of 4.
To see this, lets consider all possibilities:

A. None of the external edges is present: The cycle-covers are (a c b d), (a b)(c d), (a d b)(c) and
(a d c b). The net contribution is (-2) + 6+ (-1) + (-3) = 0.

B. Precisely (u, a) and (a, v′) are present: The cycle-covers are (b c d), (b d c), (c d)(b) and (c)(b d).
The net contribution is (2) + (3)+ (-6) + (1) = 0.

C. Precisely (v, d) and (d, u′) are present: The cycle-covers are (a b)(c) and (a c b). The net contribution
is 1 + (-1) = 0.
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Figure 6.3: The CLAUSE gadget

Figure 6.4: The cycle-covers of the CLAUSE gadget

v’

u

a d

u’

v

c

3

2

b

−1

−1

−1

Figure 6.5: The XOR gadget

D. All four external edges are present: The cycle-covers are (b c) and (b)(c). The net contribution is 1 +
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(-1) = 0.

E. Precisely (v, d) and (a, v′) are present: In this case the gadget contains a path from d to a (represented
with square brackets) as well as a cycle-cover involving the remaining vertices. The contributions to
the cycle-covers are [d b a](c) and [d c b a]. The net contribution is 1 + 3 = 4.

F. Precisely (u, a) and (d, v′) are present: The cycle-covers are [a d](b c), [a d](b)(c), [a b d](c),
[a c d](b), [a b c d] and [a c b d]. The net contribution is (-1) + 1 + 1 + 2 + 2 + (-1) = 4.

There are 3m XOR gadgets. As a result, every satisfying assignment of truth values to ϕ will contribute
43m to the cycle-cover and every other assignment will contribute 0. Hence,

PERM(G′) = 43m#(ϕ)

Now, we will convert G′ to an unweighted graph G. Observe that PERM(G′) ≤ 43m2n ≤ 26m+n. Let
N = 6m + n and M = 2N + 1. Replace the weighted edges in G′ with a set of unweighted edges as
shown in Figure 6. For weights 2 and 3, the conversion does not affect the total weight of cycle-covers. For
weight -1, the conversion blows up the total weight by 2N ≡ −1(modM). As a result, if G is the resulting
unweighted graph, PERM(G′) ≡ PERM(G) (mod M).

−1

3

2

N blocks

. . .

Figure 6.6: Conversion to an unweighted graph

Thus, we have shown a reduction of #3-SAT to 0-1PERM. This proves the theorem.

Definition 6.1. For a complexity class C, define

⊕ C = {A|∃R ∈ C, polynomial bound p : N→ N, s.t. x ∈ A⇔ #p(|x|)y.(x, y) ∈ R is odd },

BPC = {A|∃R ∈ C, polynomial bound p : N→ N, s.t.
#p(|x|)y. (x, y) ∈ R

2p(|x|)

{
≥ 2

3 if x ∈ A
≤ 1

3 if x 6∈ A
}

Theorem 6.2 (Toda). PH ⊆ BP⊕ P ⊆ P#P.

Before we prove Toda’s theorem, we will prove the following theorem as a warm-up since it introduces
most of the ideas.
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Theorem 6.3 (Valiant-Vazirani, Toda). NP ⊆ R⊕ P ⊆ RP⊕P.

Proof. We will concentrate on SAT for intuition. The following argument could apply to any NP language
equally well. Let ϕ be any boolean formula and let S be the set of satisfying assignments to ϕ. To decide
if ϕ is satisfiable we could imagine feeding ϕ to an oracle for ⊕SAT ∈ ⊕P. If |S| is odd, then the ⊕SAT
oracle will return yes and we know that ϕ is satisfiable and we are done. However if |S| > 0 is even then
we would get back a no answer which would not be helpful.

The solution is to add random linear constraints in order to reduce |S| > 0 if necessary so that it is odd.
In particular we will add linear constraints so that the remaining set of assignments S ′ has |S′| = 1 which is
certainly odd.

Now we describe the notation for the random linear constraints. View S ⊆ {0, 1}n = Fn2 where F2 is
the field with 2 elements.

Definition 6.2. For v1, v2, . . . , vi ∈ Fn2 , let

< v1, v2, . . . , vi >
⊥= {x ∈ Fn2 |v1 · x = v2 · x = . . . = vi · x = 0}

Definition 6.3. For convenience of notation we write a ∈R A to say that a is chosen uniformly at random
fromA and a1, . . . , ak ∈R A so say that a1, . . . , ak are chosen uniformly and independently at random from
A.

Lemma 6.4 (Valiant-Vazirani). If S is any non-empty subset of Fn2 , then for v1, v2 · · · vn ∈R Fn2 ,

Pr[∃i ∈ {1, · · · n}. |S∩ < v1, v2, . . . , vi >
⊥ | = 1] ≥ 1

4
.

We use the following weaker form which suffices:

Lemma 6.5. If S is any non-empty subset of Fn2 , then for v1, v2 · · · vn+1 ∈R Fn2 ,

Pr[∃i ∈ {1, · · · n}. |S∩ < v1, v2, . . . , vi+1 >
⊥ | = 1] >

1

8
.

We now see how this suffices to prove that NP ∈ RP⊕P. Define ϕv such that ϕv(x) is true if and only if
v · x = 0. Here is the algorithm:
Choose v1, · · · vn ∈R Fn2
For each i from 1 to n, call a ⊕SAT oracle on ϕi = ϕ ∧ ϕv1 ∧ · · · ∧ ϕvi+1 .
Accept iff one of the calls accepts.

Next class we will prove Lemma 6.5 and show the stronger result that NP ⊆ R.⊕ P.
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Definition 7.1. If P is any predicate define

⊕ky. P (y) = |{y ∈ {0, 1}k : P (y)}| mod 2,

#ky.P (y) = |{y ∈ {0, 1}k : P (y)}| =
∑

y∈{0,1}k

P (y),

Rky. P (y) =
|{y ∈ {0, 1}k : P (y)}|

2k

Definition 7.2. For complexity class C, define

L ∈ ⊕ · C ⇔ there is a relation R ∈ C and polynomial p such that

L = {x | ⊕p(|x|) y. R(x, y)}
L ∈ BP · C ⇔ there is a relation R ∈ C and polynomial p such that for some ε < 1/2{

Rp(|x|)y. R(x, y) ≥ 1− ε for x ∈ L
Rp(|x|)y. R(x, y) ≤ ε for x /∈ L

L ∈ R · C ⇔ there is a relation R ∈ C and polynomial p such that for some ε < 1{
Rp(|x|)y. R(x, y) ≥ 1− ε for x ∈ L
Rp(|x|)y. R(x, y) = 0 for x /∈ L

L ∈ P · C ⇔ there is a relation R ∈ C and polynomial p such that

L = {x | Rp(|x|)y. R(x, y) > 1/2}

Theorem 7.1 (Toda). PH ⊆ P#P = PPERM.

As outlined in the last lecture this is done in two steps.

Lemma 7.2 (Toda). PH ⊆ BP · ⊕P.

Lemma 7.3 (Toda). BP · ⊕P ⊆ P · ⊕P ⊆ P#P.

As a warm-up we finish the proof of the following lemma which provides the key ideas for the proof of
Lemma 7.2.

Theorem 7.4 (Valiant-Vazirani, Toda). NP ⊆ R.⊕ P ⊆ RP⊕P.

34
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Proof. To prove Theorem 7.4, as outlined in the last lecture we convert an NP problem to equivalent problem
for which there is precisely one solution (and therefore the number of solutions will be odd). This will
be accomplished by adding randomly chosen linear constraints. We use the following slightly weakened
version of a lemma due to Valiant and Vazirani.

Lemma 7.5 (Valiant-Vazirani). If ∅ 6= S ⊆ Fn2 , then for v1, · · · vn+1 ∈R Fn2 ,

Pr[∃i ∈ {1, · · · n}. |S ∩ 〈v1, v2, . . . , vi+1〉⊥| = 1] >
1

8
.

This follows immediately from the following lemma.

Lemma 7.6. Fix a set S ⊆ Fn2 , then for v1, . . . , vn+1 ∈R Fn2 ,

(a) if 0n ∈ S, then Pr[ |S ∩ 〈v1, v2, . . . , vn+1〉⊥| = 1 ] > 1
2

(b) if 0n /∈ S, and 2i−1 ≤ |S| ≤ 2i then Pr[ |S ∩ 〈v1, v2, . . . , vi+1〉⊥| = 1 ] > 1
8

Proof. We first show part (a). Since we always have 0n ∈ 〈v1, v2, . . . , vi+1〉⊥, if 0n ∈ S then 0n ∈ S∩ <
v1, v2, . . . , vi >

⊥. For any x ∈ Fn2 , if x 6= 0n we have for any j that Pr[ vj · x = 0 ] = 1/2. Therefore,
since the vj are chosen independently, Pr[ v1 · x = v2 · x = . . . = vn+1 · x = 0 ] = 1

2n+1 . Thus

Pr[∃x ∈ S − {0n}, x ∈ 〈v1, v2, . . . , vn+1〉⊥] ≤
∑

x∈S−{0n}
Pr[x ∈ 〈v1, v2, . . . , vn+1〉⊥]

=
|S| − 1

2n+1
< 1/2.

It follows that with probability greater than 1/2, 0n is the only element of S ∩ 〈v1, v2, . . . , vn+1〈⊥ which
means that Pr[ |S ∩ 〈v1, v2, . . . , vn+1〉⊥| = 1 ] > 1/2.

We now prove part (b). Suppose that 0n /∈ S and 2−1 ≤ |S| ≤ 2i. Define h(x) = (v1 ·x, · · · , vi+1 ·x) ∈
Fi+1

2 . As in the argument for part (a), for x 6= 0n, Pr[h(x) = 0i+1] = 1/2i+1. An alternative way of
viewing this probability statement is to view the condition that h(x) = 0 as a system of linear equations
whose variables are the coordinates of the vj vectors and whose coefficients are given by the coordinates of
x. For x 6= 0, each equation vj · x = x · vj = 0 adds an additional independent constraint and therefore the
dimension of the solution space drops by 1 for each j. In total, there are i+1 linearly independent equations
in the vj so the solution space is a 2−(i+1) fraction of all possible vectors.

Suppose now that x 6= y and x, y 6= 0n, Then the condition that h(x) = h(y) = 0i+1 is given by 2(i+1)
equations whose coefficients are given by the coordinates of x and y. Since x /∈ {0n, y} and y 6= 0n, x and
y are linearly independent and thus all of the 2(i + 1) equations given by h(x) = h(y) = 0i+1 are linearly
independent. Therefore Pr[h(x) = h(y) = 0i+1] = 1/22(i+1) for x, y ∈ S, x 6= y. Thus

Pr[∃y ∈ S − {x}. h(x) = h(y) = 0i+1] ≤
∑

y∈S−{x}
Pr[h(x) = h(y) = 0i+1]

=
|S| − 1

22(i+1)

<
1

2i+2
since |S| ≤ 2i.
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Therefore

Pr[h(x) = 0i+1 and ∀y ∈ S − {x}. h(y) 6= 0i+1]

= Pr[h(x) = 0i+1]− Pr[∃y ∈ S − {x}. h(x) = h(y) = 0i+1]

>
1

2i+1
− 1

2i+2
=

1

2i+2
.

Taking the union of these events, which are disjoint, over all choices of x ∈ S,

Pr[∃x. h(x) = 0i+1 and ∀y ∈ S − {x}. h(y) 6= 0i+1] >
|S|
2i+2

≥ 2i−1

2i+2
=

1

8
since |S| ≥ 2i−1

as required.

We now prove Theorem 7.4 that NP ⊆ R · ⊕P. The key difference between showing this and showing
that NP ∈ RP⊕P is the requirement that the algorithm make only one query to the ⊕P oracle and return the
answer as its output. In order to do this we begin with a different basic experiment from the one outlined at
the end of last lecture. Instead of trying all possible values of i we choose i at random. With probability at
least 1/n this choice of i will be the correct i for Lemma 7.5. Here is the basic experiment E on input ϕ:

A. choose i ∈R {1, . . . , n}, and v1, . . . , vi+1 ∈R Fn2

B. query the⊕SAT oracle on ϕ∧ϕv1∧· · ·∧ϕvi+1 where ϕv is a formula that is satisfied by x iff v ·x = 0.

C. accept iff the oracle accepts.

Observe that if ϕ has n variables then

• if ϕ is unsatisfiable then Pr[ E accepts ϕ] = 0, and

• if ϕ is satisfiable then Pr[ E accepts ϕ] > 1
8n .

This yields a randomized algorithm (with one call to an ⊕P oracle) for SAT with 1-sided error but its
success probability is too low. To boost its success probability we make m independent trials of E. Each
trial chooses an integer i in {1, . . . ,m} and sequence of i+ 1 vectors.

Let r1 = (i1, v
1
1 , . . . , v

1
i1

) through rm = (i1, v
m
1 , . . . , v

m
im) be the sequence of random choices of the

independent trials of experiment E. Therefore

Pr[ all m experiments fail] ≤ (1− 1

8n
)m ≤ e− m

8n ≤ e−2n for m = 16n2.

Thus
ϕ ∈ SAT ⇔ Rr1, . . . , rm ∃j ∈ [16n2]. ϕrj ∈ ⊕SAT︸ ︷︷ ︸

≥ 1− e−2n

where ϕrj is the variant of ϕ created by added the linear constraints given by random string rj . In compari-
son with trying all values of i, this does not seem to have helped much (except to reduce the error) because
there are now 16n2 calls to the ⊕P oracle. We will concentrate on modifying the part of formula marked
with the underbrace so that only one such call is required.
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Figure 7.1: Converting from OR (∃) to AND (∀

We now express things more generally using the definition of ⊕P. We have shown that for any NP

language L, there is a polynomial-time computable relation R and a polynomial bound p such that

x ∈ L⇔ Rr ∃j ∈ [16N 2]⊕N y.R(x, y, j, r)︸ ︷︷ ︸ ≥ 1− e−2N

where N = p(|x|) and r = (r1, . . . , r16N2). Now

∃j ∈ [16N 2]⊕N y. R(x, y, j, r) = ¬∀j ∈ [16N 2]¬ ⊕N y. R(x, y, j, r)

= ¬∀j ∈ [16N 2]⊕N+1 y. R(x, y, j, r)

where (R) is defined as in the following lemma.

Lemma 7.7. If A ∈ ⊕P then A ∈ ⊕P.

Proof. We simply add an additional 1 input to the parity quantifier to negate its value. More precisely, if
x ∈ A ⇔ ⊕Ny. R(x, y) for polynomial-time computable R then x ∈ A ⇔ ⊕N+1y′. R(x, y′) where
R(x, y′) = ((y′ = 0N+1) ∨ ((y′ = 1y) ∧R(x, y))).

Since an ∃ quantifier acts as an OR and a ∀ acts as an AND we can view this as in Figure 7.1.

Since its inputs are 0-1-valued, the ∀ (or AND) acts simply as a fan-in 16N 2 multiplication of large
fan-in sums modulo 2. Expanding out this product of sums as a sum of products yields

¬∀j ∈ [16N 2]⊕N+1 y. R(x, y, j, r) = ¬⊕16N2(N+1) y1, . . . , y16N2

16N2∧

j=1

R(x, yj , j, r)

= ¬⊕16N2(N+1) yR′(x, y, j, r) for some polytime R′

= ⊕16N2(N+1)+1yR′(x, y, j, r) incorporating the negation.

This is only a single call to a⊕P oracle. Plugging this in for the quantity in the underbrace yields the desired
R · ⊕P algorithm.

This argument has yielded almost all the ideas we will need for proving Lemma 7.2.

Proof of Lemma 7.2. Suppose L ∈ PH, then there is some k such that L ∈ ΣkP. Therefore there is some
relation R and polynomial p such that

L = {x | ∃p(|x|)y1∀p(|x|)y2∃ . . . Qp(|x|)yk. R(x, y1, . . . , yk)}
= {x | ∃p(|x|)y1¬∃p(|x|)y2¬∃¬ . . . Qp(|x|)yk. R(x, y1, . . . , yk)}.
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Consider expanding the tree of quantifiers as a giant tree of possible values. For each of the 2jp(|x|) values
of the prefix y1, . . . , yj for 0 ≤ j ≤ k−1 there is an ∃ node in the tree. The total number of such nodes over
all values of j ≤ k − 1 is less than 2kp(|x|). Let N = kp(|x|). Choose 16N 2 tuples rj = (ij , v

j
1, . . . , v

j
ij+1)

where ij ∈ [N ] and vji ∈ FN2 as in the proof of Theorem 7.4. Apply the argument of Theorem 7.4 (before the
conversion to a single ⊕P call) simultaneously to all the predicates corresponding to the all ∃ nodes, using
the same sequence of random choices. (This involves adding the same set of linear constraints to augment
each of the ∃ nodes in this tree.) For a fixed input x and a fixed node, the probability that the value at that
node is incorrectly computeed is at most e−2N . There are fewer than 2N nodes in the tree and only 2n inputs
x of length n. Therefore the probability that there is some node of the tree that is computed incorrectly is at
most 2n · 2N · e−2N < 1

4 .

So we have an computation for x ∈ L described as

R−→r ∃j1 ∈ [16N2]⊕N y1 · · · ∃jk ∈ [16N2]⊕N yk. R(x,−→r , j1, . . . , jk, y1, . . . , yk)

for some polynomial-time computable relation R that gives the correct value all but at most 1/4 of the time
(over the random choices r). This is a bounded-error algorithm for L. (Note that because of the negations
in the tree, the error is 2-sided and no longer 1-sided as in the case of NP.)

Again we multiply out the small fan-in ∃ quantifiers to yield to rewrite this expression as:

R−→r ⊕(16N2)kN (y1
1 . . . y

1
k) . . . (y

16N2

1 , . . . , y16N2

k )
∧

j1...jk∈[16N2]k

R(x,−→r , j1, . . . , jk, yj11 , . . . , yjkk ).

Since k is constant, this vector of y values has polynomial size and the interior computation is polynomial
time, and thus L ∈ BP · ⊕P.

Proof of Lemma 7.3. We show that BP · ⊕P ⊆ P#P. Suppose that L ∈ BP · ⊕P. (It will be easy to see that
the result also holds for the unbounded-error complexity class P · ⊕P.) Then there is some polynomial-time
TM M and polynomial function N = p(|x|), such that

L = {x | RNr ⊕N y. M(x, r, y) > 1/2}
= {x |

∑

r∈{0,1}N

B(x, r) > 2N−1},

where B(x, r) =
∑

y∈{0,1}N M(x, r, y) mod 2

Here is the basic proof idea: Suppose we could create a polynomial time TM M ′ such that

∑

y′∈{0,1}N′

M ′(x, y′, r) ≡ B(x, r) (mod 2N+1).

Then we would have
∑

r∈{0,1}N B(x, r) ≡∑
r∈{0,1}N

∑
y′∈{0,1}N′ M ′(x, y′r) (mod 2N+1).

Then to tell whether or not x ∈ L, we can simply compute #N+N ′
(r, y′). M ′(x, y′, r) using the #P

oracle, take that value mod 2N+1, and accept if the result is > 2N−1.

We will not quite be able to do this but we will be able to find an M ′ such that

∑

y′∈{0,1}N′

M ′(x, y′, r) ≡ −B(x, r) (mod 2N+1).
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By a similar argument we can decide L by making a call to compute #N+N ′
(r, y′). M ′(x, y′, r) using the

#P oracle, taking that value mod 2N+1, and accepting if the result is < 2N+1 − 2N−1.

In order to satisfy these conditions we need to convert the number of accepting computations from being
either 0 or −1 modulo 2 into a number that is either 0 or −1 modulo 2N+1. The key technical lemma is the
following:

Lemma 7.8. For integers a and m > 0,

(a) if a ≡ 0 (mod m) then 4a3 + 3a4 ≡ 0 (mod m2), and

(b) if a ≡ −1 (mod m) then 4a3 + 3a4 ≡ −1 (mod m2).

Proof. Part (a) follows because m2|a2 and a2|4a3 + 3a4.

For part (b) write a = km− 1. Then

4a3 + 3a4 = 4(km− 1)3 + 3(km− 1)4

≡ 12km − 4 + (−12km+ 3) (mod m2)

≡ −1 (mod m2).

We apply this lemma inductively to construct polynomial-time machines Mi(x, y, r) such that∑
yMi(x, y, r) ≡ −B(x, r) (mod 22i

). Applying the construction until i = dlog2(N + 1)e will yield
the desired M ′. For the base case i = 0, choosing M0(x, y, r) = M(x, y, r) we have

∑
yM0(x, y, r) ≡

−B(x, r) (mod 2) as required. For the inductive step, suppose that we have already constructed M i. We
will apply Lemma 7.8 with m = 22i

and note that m2 = 22i+1
. We create a new machine Mi+1 so that on

input (x, r) if a is the number of accepting choices for y in Mi then Mi+1 will have 4a3 + 3a4 accepting
choices of its corresponding y′.

Let y′ = (z1, z2, z3, y1, y2, y3, y4), such that zi ∈ {0, 1}, and yi ∈ {0, 1}|y|. Define

Mi+1(x, r, y
′) = (z1 ∧Mi(x, r, y1) ∧Mi(x, r, y2) ∧Mi(x, r, y3) ∧ (y4 = 0|y|))

∨((z1 ∧ (z2 ∨ z3)) ∧Mi(x, r, y1) ∧Mi(x, r, y2) ∧Mi(x, r, y3) ∧Mi(x, r, y4)).

It is easy to see the Mi+1 has the desired number of accepting choices of y ′ as a function of the number of
choices of y for Mi. By Lemma 7.8, we know that

∑
y′ Mi+1(x, y

′, r) ≡ −B(x, r) (mod 22i+1
).

It remains to confirm the final machine M ′ is polynomial-time computable. It clearly will be polynomial
in the length of the final string y′. Since the number of times to repeat this construction is i = dlog2(N+1)e,
and at each iteration |y′| = 3 + 4|y|, |y′| grows by factor ≤ 7 per iteration. Therefore the total length of y ′

at the end is ≤ 7log2(N+1)N , which is polynomial in N and therefore polynomial in |x| as required.

We now simply fit this into the framework to yield a polynomial-time algorithm for L that makes a
single call to a #P oracle.
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Definition 8.1. TIMESPACE(T (n), S(n)) = {L ∈ {0, 1}∗ | ∃ offline, multitape TM M such that L =
L(M) and M uses time O(T (n)) and space O(S(n)) }.

One should note that, while TIMESPACE(T (n), S(n)) ⊆ TIME(T (n))∩SPACE(S(n)), in general the
definition is different from TIME(T (n)) ∩ SPACE(S(n)), since a single machine is required to run in both
time O(T (n)) and space O(S(n)).

We will prove a variant of the following theorem which is the strongest form of time-space tradeoffs
currently known. The first result of this sort was shown by Fortnow; on the way to showing bounds like
these we prove bounds for smaller running times due to Lipton and Viglas.

Theorem 8.1 (Fortnow-van Melkebeek). Let φ = (
√

5 + 1)/2. There is a function s : R+ → R+ s.t. for
all c < φ,SAT 6∈ TIMESPACE(nc, ns(c)) and limc→1 s(c) = 1.

We will prove a weaker form of this theorem that for c < φ, SAT 6∈ TIMESPACE(nc, no(1)). By the
efficient reduction described in Lemma 5.4 of NTIME(T (n)) to 3-SAT, which maps an NTIME(T (n))
machine to a 3CNF formula of size O(T (n) log T (n)) in time O(T (n) log T (n)) time and O(log T (n))
space, to prove this weaker form it suffices to show the following.

Theorem 8.2. For c < (
√

5 + 1)/2, NTIME(n) 6⊆ TIMESPACE(nc, no(1)).

One simple and old idea we will use is that of padding which shows that if simulations at low complexity
levels exist then simulations at high complexity levels also exist.

Lemma 8.3 (Padding Meta-lemma). Suppose that C(n) ⊆ C′(f(n)) for parameterized complexity class
families C and C′ and some function f : N → R+. C,C′ parameterized by n and f(n) respectively. Then
for any t(n) ≥ n such that is computable using the resources allowed for C(t(n)), C(t(n)) ⊆ C ′(f(t(n))).

Proof. Let L ∈ C(t(n)) and let M be a machine deciding L that witnesses this fact. Let x ∈ {0, 1}n
be input for M . Pad x to length t(n), say to creat xpad = x01t(n)−n−1. For A ∈ C(t(n)) let Apad =
{x01t(|x|)−|x|−1 | x ∈ A }. Since it is very easy to strip off the padding, Apad ∈ C(n); so, by assumption,
there is a witnessing machine M ′ showing that Apad ∈ C′(f(n)). We use M ′ as follows: On input x, create
xpad and run M ′ on xpad. The resources used are those of C′(f(n)) as required.

Theorem 8.4 (Seiferas-Fischer-Meyer). If f, g : N → N, f, g are time constructible, and f(n + 1) is
o(g(n)) then NTIME(f(n)) ( NTIME(g(n)).

40
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Note that, unlike the case for the deterministic time hierarchy, there is no multiplicative O(log T (n))
factor in the separation. In this sense, it is stronger at low complexity levels. However for very quickly
growing functions (for example double exponential), the condition involving the +1 is weaker than a mul-
tiplicative log T (n). When we use it we will need to ensure that the time bounds we consider are fairly
small.

Proof Sketch. The general idea of the simulation begins in a similar way to the ordinary time hierarchy
theorem: One adds a clock and uses a fixed simulation to create a universal Turing machine for all machines
running in time bound f(n). In this case, unlike th deterministic case we can simulate an arbitrary k-tape
NTM by a 2-tape NTM with no more than a constant factor simulation loss. This allows one to add the clock
with no complexity loss at all. The hard part is to execute the complementation part of the diagonalization
argument and this is done by a sophisticated padding argument that causes the additional +1. It uses the fact
that unary languages of arbitrarily high NTIME complexity exist.

We will use the following outline in the proof of Theorem 8.2.

A. Assume NTIME(n) ⊆ TIMESPACE(nc, no(1)) for some constant c.

B. Show that for some (not too large) t(n) that is time computable, NTIME(n) ⊆ TIME(nc) =⇒
TIMESPACE(t(n), t(n)o(1)) ⊆ NTIME(t(n)f(c)+o(1)) for some constant f(c) > 0.

C. For T (n) = t(n)1/c where t(n) is given in part B, put the two parts together derive

NTIME(T (n)) ⊆ TIMESPACE(T (n)c, T (n)o(1)) from part A by padding Lemma 8.3

⊆ NTIME(T (n)cf(c)+o(1)) by part B.

D. If cf(c) < 1, this is a contradiction to the NTIME hierarchy given in Theorem 8.4.

Part B of this outline requires the most technical work. The key notions in the proof involve extensions
of the ideas behind Savitch’s Theorem and for this it is convenient to use alternating time complexity classes.

Definition 8.2. Define ΣkTIME(T (n)) to be the set of all languages L such that x ∈ L iff
∃T (|x|)y1∀T (|x|)y2 . . . Q

T (|x|)ykM(x, y1, . . . , yk) where M runs for at most O(T (|x|)) steps on input
(x, y1, . . . , yn). Define ΠkTIME(T (n)) similarly.

Lemma 8.5. For S(n) ≥ log n and any integer function b : N→ N,
TIMESPACE(T (n), S(n)) ⊆ Σ2TIME(T ′(n)) where T ′(n) = b(n) · S(n) + T (n)/b(n) + log b(n).

Proof. Recall from the proof of Savitch’s Theorem that we can consider the computation as operating on
the graph of TM configurations. For configurations C and C ′ we write C `t C ′ if and only if configuration
C yields C ′ in at most t steps. In the proof of Savitch’s theorem we used the fact that we could assume a
fixed form for the initial configuration C0 and a unique accepting configuration Cf , and expressed

(C0 `T Cf ) ⇐⇒ ∃Cm. ((C0 `T/2 Cm) ∧ (Cm `T/2 Cf )).
In a similar way we can break up the computation into b = b(n) pieces for any b ≥ 2, so that, denoting Cf

by Cb, we derive

(C0 `T Cb) ⇐⇒ ∃(b−1)SC1, C2, . . . , Cb−1∀log bi. (Ci−1 `T/b Ci).
Each configuration has size O(S(n) + log n) = O(S(n)) and determining whether or not Ci−1 `t/b Ci
requires time at most O(T (n)/b(n) + S(n)). Thus the computation overall is in Σ2TIME(b(n) · S(n) +
T (n)/b(n) + log b(n)).
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Corollary 8.6. For all T, S : N→ R+,
TIMESPACE(T (n), S(n)) ⊆ Σ2TIME(

√
T (n)S(n)).

Proof. Apply Lemma 8.5 with b(n) =
√

T (n)
S(n) .

Given a simple assumption about the simulation of nondeterministic time by deterministic time we see
that we can remove an alternations from the computation.

Lemma 8.7. If T (n) ≥ n is time constructible and NTIME(n) ⊆ TIME(T (n)), then for time constructible
T ′(n) ≥ n,Σ2TIME(T ′(n)) ⊆ NTIME(T (T ′(n))).

Proof. By definition, If L ∈ Σ2TIME(T ′(n)) then there is some predicate R such that

x ∈ L ⇐⇒ ∃T ′(|x|)y1∀T
′(|x|)y2R(x, y1, y2)

and R(x, y1, y2) is computable in time O(T ′(|x|)). Therefore

x ∈ L ⇐⇒ ∃T ′(|x|)y1¬∃T
′(|x|)y2¬R(x, y1, y2).

By padding using the assumption that NTIME(n) ⊆ TIME(T (n)), we obtain NTIME(T ′(n)) ⊆
TIME(T (T ′(n))) and thus the set

S = {(x, y1) | |y1| ≤ T ′(|x|) and ∃T ′(|x|)y2¬R(x, y1, y2)}

is in TIME(T (T ′(n))). Since x ∈ L if and only if ∃T ′(|x|)y1¬((x, y1) ∈ S), it follows that

L ∈ NTIME(T ′(n) + T (T ′(n))) = NTIME(T (T ′(n)))

as required.

Note that the assumption in Lemma 8.7 can be weakened to NTIME(n) ⊆ coNTIME(T (n)) and the
argument will still go through. We now obtain a simple version of Part B of our basic outline for the proof
of Theorem 8.2.

Corollary 8.8. If NTIME(n) ⊆ TIME(nc) then for t(n) ≥ n2,
TIMESPACE(t(n), t(n)o(1)) ⊆ NTIME(t(n)c/2+o(1)).

Proof. By Corollary 8.6,

TIMESPACE(t(n), t(n)o(1)) ⊆ Σ2TIME(t(n)1/2+o(1)).

Applying Lemma 8.7 with T ′(n) = t(n)1/2+o(1) ≥ n yields

Σ2TIME(t(n)1/2+o(1)) ⊆ NTIME(t(n)c/2+o(1))

as required since (t(n)o(1))c is t(n)o(1).

Corollary 8.9 (Lipton-Viglas). NTIME(n) 6⊆ TIMESPACE(nc, no(1)) for c <
√

2.
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Proof. Let t(n) be as defined in Corollary 8.8 and let T (n) = t(n)1/c. If NTIME(n) ⊆
TIMESPACE(nc, no(1)) then

NTIME(T (n)) ⊆ TIMESPACE(T (n)c, T (n)o(1))

= TIMESPACE(t(n), t(n)o(1))

⊆ NTIME(t(n)c/2+o(1)) by Corollary 8.8

= NTIME(T (n)c
2/2+o(1)).

Since c <
√

2, c2/2 < 1 and this yields a contradiction to the nondeterministic time hierarchy Theorem 8.4.

Fortnow and van Melkebeek derived a slightly different form from Lemma 8.5 for alternating time sim-
ulation of TIMESPACE(T (n), S(n)) using the following idea. For a deterministic Turing machine running
for T steps we know that C ′

0 `T Cb if and only for all C ′
b 6= Cb, C ′

0 6`T C ′
b. Furthermore Therefore

(C ′
0 `T Cb) ⇐⇒ ∀bSC ′

1, C
′
2, . . . , C

′
b−1, C

′
b∃log bi. ((C ′

b = Cb) ∨ (C ′
i−1 6`T/b C ′

i)).

Strictly speaking this construction would allow one to derive the following lemma.

Lemma 8.10. For S(n) ≥ log n and any integer function b : N→ N,
TIMESPACE(T (n), S(n)) ⊆ Π2TIME(T ′(n)) where T ′(n) = b(n) · S(n) + T (n)/b(n) + log b(n).

This is no better than Lemma 8.5 but we will not use the idea in this simple form. The key is that we
will be able to save because we have expressed C ′

0 `T Cb in terms of C ′
i−1 6`T/b C ′

i. This will allow us to
have fewer alternations when the construction is applied recursively since the ¬∀C ′

1, . . . quantifiers that will
occur at the next level can be combined with the ∃i quantifier at the current level. This is the idea behind the
proof of Theorem 8.2.

Proof of Theorem 8.2. We first prove the following by induction on k. Let fk be defined by fk+1(c) =
c · fk(c)/(1 + fk(c)) and f1(c) = c/2.

Claim 1. If NTIME(n) ⊆ TIME(nc) then for k ≥ 1 and some not too large t(n),

TIMESPACE(t(n), t(n)o(1)) ⊆ NTIME(t(n)fk(c)+o(1)).

Proof of Claim. The base case k = 1 is precisely Corollary 8.8. Suppose that the claim is true for k.
Suppose that we have a machine M witness a language L in TIMESPACE(t(n), t(n)o(1)). We apply the
following expansion.

(C ′
0 `t Cb) ⇐⇒ ∀bSC ′

1, C
′
2, . . . , C

′
b−1, C

′
b∃log bi. ((C ′

b = Cb) ∨ (C ′
i−1 6`t/b C ′

i)).

Choose b(n) = t(n)fk(c)/(1+fk(c). Then t(n)/b(n) = t(n)1/(fk(c)+1) and b(n)s(n) =
t(n)fk(c)/(1+fk(c))+o(1) . Since fk(c) ≤ f1(c) = c/2 < 1, b(n)s(n) ≤ t(n)/b(n) so the computation
time for the expansion is dominated by t(n)/b(n) = t(n)1/(fk(c)+1). By the inductive hypothesis applied to
the inner C ′

i−1 6`t/b C ′
i we obtain that for some not too large t(n)/b(n) this computation can be done in

NTIME([t(n)/b(n)]fk(c)+o(1)) = NTIME(t(n)fk(c)/(fk(c)+1)+o(1)).
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Adding the ∃log bi also keeps it in the same complexity class. By padding and the hypothesis that
NTIME(n) ⊆ TIME(nc) we obtain that the inner computation ∃log bi. ((C ′

b = Cb) ∨ (C ′
i−1 6`t/b C ′

i))
can be done in

TIME(t(n)c·fk(c)/(fk(c)+1)+o(1)).

Plugging this in we obtain that

TIMESPACE(t(n), t(n)o(1)) ⊆ coNTIME(t(n)c·fk(c)/(fk(c)+1)+o(1)).

Since TIMESPACE(t(n), t(n)o(1)) is closed under complement and by the definition of fk+1(c) we obtain
that

TIMESPACE(t(n), t(n)o(1)) ⊆ NTIME(t(n)fk+1(c)+o(1))

as required.

Applying the end of the proof outline we obtain that for any k, if NTIME(n) ⊆ TIMESPACE(nc, no(1))
then for T (n) = t(n)1/fk(c),

NTIME(T (n)) ⊆ TIMESPACE(T (n)c, T (n)o(1))

= TIMESPACE(t(n), t(n)o(1))

⊆ NTIME(t(n)fk(c)+o(1))

= NTIME(T (n)c·fk(c)+o(1)).

Observe that fk(c) is a monotonically decreasing function with fixed point f∗(c) = c · f∗(c)/(f∗(c) + 1)
when f∗(c) = c−1. Then c·f∗(c) = c(c−1) < 1 when c < φ = (

√
5+1)/2 which provides a contradiction

to the nondeterministic time hierarchy theorem.

Open Problem 8.1. Prove that NTIME(n) ⊆ TIMESPACE(nc, no(1)) for some c > (
√

5 + 1)/2, for
example c = 2.



Lecture 9

Interactive Proofs and Arthur-Merlin Games

April 27, 2004
Lecturer: Paul Beame

Notes: Chris Ré

9.1 Background and Motivation

In the 1980’s two notions interactive computation were developed. One, due to Babai, originated in gener-
alizations of NP to allow more powerful verifiers that include probabilistic verification. The other, due to
Goldwasser, Micali, and Rackoff, originated in cryptography and was a means to the end of defining zero-
knowledge proofs, protocols that allow a party in a cryptographic protocol to convince another party of some
property without revealing additional information. (In this course we will not discuss the zero-knowledge
aspects, however.) Today’s lecture will focus on showing the relationship between these two definitions of
interactive computation. (Combined, these two papers won the Gödel Prize.) The definitions here began
research on the path to the PCP theorem.

9.2 Interactive Proof Preliminaries

We can view a typical NP algorithm as an interaction between an all-powerful prover P and a deterministic
polynomial-time bounded verifier V . On a shared input x that the verifier wishes to prove is in L, the prover
produces y, a certificate depending on x, sends the certificate y to the verifier and the verifier accepts if and
only if V (x, y) = 1. This can be thought of as one round of interaction. The exact power of the prover is
not important here but everything still must be verifiable by the deterministic polynomial time machine. So
perhaps the amount of interaction is important? What if we were to allow more rounds of interaction as in
the following figure?

Formally, we say that a round of an interactive protocol corresponds an uninterrupted sequence of
communications of a single party. In this picture y1, y2, . . . , y` denote the messages sent by the prover
and z1, z2, . . . , z`−1 denote the messages sent in response by the verifier. We can formally define the
verifier as an algorithm V and the actions of the verifier are given by by z1 = V (x1, y1), ..., z` =
V (x, y1, z1, y2, z2, . . . , y`). The prover’s actions can be defined similarly. The (still deterministic) poly-
nomial time verifer accepts iff V (x, y1, z1, y2, z2, . . . , y`) = 1 at the end of the computation. (This is 2`− 1
round computation.)

Definition 9.1. Given a Prover P and a Verifier V let (P, V )(x) denote the output of the verifier on input x
when the protocol (P, V ) is executed.

Definition 9.2. (P, V ) is an interactive proof for L if and only if

45
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Prover Verifier

Figure 9.1: Prover Verifier Interaction

{
(P, V )(x) = 1 for all x ∈ L
(P ∗, V )(x) = 1 for all x /∈ L for all provers P ∗.

We claim this is the same power as NP.

Lemma 9.1. Interactive proofs with deterministic polynomial-time verifiers yields proofs for precisely the
languages in NP.

Proof. To see this, notice that for a multi-round proof the prover can determine in advance what the verifier
will say at each response and simply send the entire sequence (y1, z1, . . . , y`) to the verifier which yields a
single round of interaction and thus NP.

In each of the protocols it sufficed for the prover to have the power of NP in order to execute the protocol.
However, our limits on the power of the verifier were what restricted the set of languages for which we had
interactive proofs.

9.3 Interactive Proofs

Straight interaction with a deterministic verifier did not buy us any extra power. So instead we allow the
Verifier to have access to a private random string r. Thus we can define a protocol pair (P, V (r) and its
actions on an input x as before. From now on we will assume that the verifier V (r) runs in polynomial time
as a function of the length of its inputs and that all messages are polynomial-length as a function of |x|.

Definition 9.3. A Prover P and a randomized verifier V with access to a random string r accepts a language
L if and only if for some ε < 1/2,





Pr
r∈{0,1}|x|O(1) [(P, V (r))(x) = 1] > 1− ε for x ∈ L

∀P ∗. Pr
r∈{0,1}|x|O(1) [(P ∗, V (r))(x) = 1] ≤ ε for x /∈ L.
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Notice that this is a BPP-like acceptance. It is common to say that the verifier is convinced if it accepts
the interactive computation. A parameter we will be concerned with is the number of rounds. Notice that
these are not round-trips but sending in one direction. This method of counting rounds corresponds nicely
to alternation in the polynomial hierarchy. We can now define a complexity class of these interactions.

Definition 9.4. Define IP[k(n)] to be the set of languages L such that given an x ∈ L there is a (polynomial-
time randomized) protocol that takes at most k(n) rounds to convince the verifier of x’s membership in L.

Definition 9.5. IP = IP [nO(1)] = IP [Poly(n)].

The following is an easy exercise.

Exercise 9.1. IP ⊆ PSPACE.

We will later prove that the reverse inclusion also holds, i.e. IP = PSPACE.

9.3.1 Graph Non-isomorphism ∈ IP[2]

Definition 9.6. GRAPH-NON-ISOMORPHISM =
{〈G0, G1〉 | G0, G1 are encodings of graphs and ∀σ ∈ S|V (G0)|, σ(G0) 6= G1}.

Notice the problem GRAPH-ISOMORPHISM of graph isomorphism is in NP since we can guess which
permutation to use. This problem will be particularly interesting. Later we will show that if GRAPH-
ISOMORPHISM were NP-complete then the polynomial-time hierarchy collapses.

Protocol

We will now give a 2 round protocol to decide GRAPH-NON-ISOMORPHISM. Both prover and verifier
have access to G0 and G1.

V → P : Verifier chooses c ∈R {0, 1}, chooses σ ∈R Sn where n = |V (G0)|.
Verifier sends σ(Gc) to the prover.

P → V : The prover, with all possible computation power, determines to which of the two graphs this one is
supposed to be isomorphic, say Gb for b ∈ {0, 1}. (If the input graphs are isomorphic to each other
the prover can choose b randomly.) The prover send b to the verifer.

Verification: The Verifier accepts iff b = c.

Discussion of Protocol

The important thing to notice is that if 〈G0, G1〉 is not in L, that is they are isomorphic graphs then the
prover has exactly a 50-50 chance of guessing which value the verifier chose for c. If 〈G0, G1〉 ∈ L then the
prover should never get it wrong.

This acceptance condition yields a probability only of 1/2. We can massage this into the correct form
that we can execute many copies in parallel. That is in the first round the verifier ships G1, .., Gk to the
prover where each Gi is an independent uniformly random selection according to the first round of the
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original protocol. The verifier accepts only if the prover answers correctly for each of the graphs. This does
not increase the number of rounds but the prover only fools the verifier with probability 1

2k . Notice that it is
crucial that the verifier not have access to the coin flips.

BPP and RP have Amplification Lemmas and these essentially carry over with us now using parallel
independent invocations of the verifier as an analog of multiple independent copies of the machine.

Lemma 9.2 (IP Amplification Lemma). Let p(n) be a polynomial. Let V be a Verifier which on inputs
of length n, a total of g(n) messages each of length m(n), using `(n) random bits and error probability at
most 1/2 − δ(n). Then there is a V ′ such that L(V ) = L(V ′), using at most g(n) messages, each of length
O(p(n)m(n)/δ2(n)) using O(p(n)`(n)/δ2(n)) random bits and with an error probability at most 2−p(n).

Proof. (P ′, V ′) perform O(p(n)/δ2(n)) independent parallel simulations of (P, V ) and V ′ takes the ma-
jority of the answers. Clearly this blows up the message by the corresponding orders of magnitude and
the number of rounds is unchanged. The calculation for the probability of success is identitical that of
Lemma 3.3

9.4 Arthur-Merlin Games

In this variant of interactive protocols at any point the in the protocol the Prover (now the all-powerful wizard
Merlin) is allowed access to all the random coins used by the Verifier (now the not-so smart king Arthur)
so far. With this definition it suffices to assume that the strings that are passed back and forth now simply
contain the random guesses used by Arthur since it is clear that Merlin, who is all powerful, could easily
have computed whatever string Arthur would have computed based on these random guesses.

The key is that Merlin is unaware of the outcomes of the coin before the Arthur sends them to him
Notice that Merlin is powerful enough to simulate all possible flips of the coin ahead of time and therefore
can play optimally. The game ends with a polynomial time deterministic verification based on the input and
the message exchanged. We now use ri to denote the i-th random string that Arthur sent. The acceptance
condition is BPP-like as with ordinary interactive proofs. More precisely, there is a deterministic polynomial
time verifier A and a prover M such that if (r1, y1, . . . , y`) is the sequence of communicated values on input
x, where each ri is chosen uniformly at random, then Pr

r∈{0,1}|x|O(1) [A(x, z1, r1, y1, ..., yk) = 1] > 1− ε if

x ∈ L and for all choices of (y∗1, . . . , y
∗
k), Pr

r∈{0,1}|x|O(1) [A(x, z1, r1, y1, ..., yk) = 1] < ε if x /∈ L. We still

count rounds in the half round trips and either party is allowed to go first.

9.4.1 Arthur-Merlin Complexity Classes

We denote the complexity class of languages accepted by Arthur-Merlin protocols by an alternating se-
quence of letters A and M where the number of letters equal to the number of rounds. For example, AMA =
{ L | there is a 3 round Arthur-Merlin protocol for L in which Arthur starts}.

Notice that ending at an A is like having a BPP machine to do the verification. The class M is NP and
the class A is BPP.

Consider the following view of AM:

L ∈ AM if and only if there is a polynomial-time verifier V , and a polynomial p such that ∀x,

Pr[ Rp(|x|)r∃p(|x|)yV (x, y, r) = 1] is

{
> 1− ε if x ∈ L
≤ ε if x /∈ L
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The first quantifier acts like a BPP machine that makes one call to an NP oracle accepting its answer; so
AM = BP · NP. The value of the Arthur-Merlin game is defined to be the probability that Arthur (the
verifier) is convinced given optimal play by Merlin. We can express the value of the Arthur-Merlin game on
input x using a form of quantifier, namely A as an Averaging quantifier and M as a Maximization quantifier.
The value of the above AM protocol is then Ap(|x|)r Mp(|x|)y. V (x, y, r). This use of A and M as the
quantifiers is the source of the names Arthur and Merlin.

Now consider MA. In this case after doing all the nondeterministic work, we get access to a BPP

machine, so we get MA = N · BPP. In quantifiers with a similar verifier the game would have a value
Mp(|x|)r Ap(x)y. V (x, y, r).

Definition 9.7. Define
AM[k] = {L | L has a k round Arthur-Merlin game with Arthur starting} and
MA[k] = {L | L has a k round Arthur-Merlin game with Merlin starting}.

Today we will describe the surprising result that Arthur-Merlin games and interactive proofs are essen-
tially equivalent in power.

Theorem 9.3 (Goldwasser, Sipser). IP[t(n)] ⊆ AM[t(n)+2]

Next class we will prove the following Theorem.

Theorem 9.4 (Babai, Babai-Moran). For constant k ≥ 2, AM = AM[k] = MA[k + 1], moreover, for any
t(n). AM[2t(n)] ⊆ AM[t(n)+1].

From these two theorems and the protocol for GRAPH-NON-ISOMORPHISM we derive.

Corollary 9.5. GRAPH-NON-ISOMORPHISM ∈ AM

This is a bit surprising since our protocol relied so heavily on the secret coins which have disappeared
in the Arthur-Merlin model.

Proof of Theorem 9.3. Suppose there is an interactive proof (P, V ) for L. Merlin will convince Arthur that
P would have convinced V for a large fraction of random strings r. The key to doing this will be to derive a
short protocol that will convince Arthur that certain sets are large. This will be done using universal hashing.

Definition 9.8. A (pairwise-independent) universal hash function family is a family of functions, H , from
a set U to a set V satisfying the following properties:

• For all h ∈ H , h : U → V .

• For all x ∈ U and for all y ∈ V , Prh∈RH [h(x) = y] = 1
|V | .

• For all x1, x2 ∈ U with x1 6= x2 and for all y1, y2 ∈ V , Prh∈RH [h(x1) = y1 and h(x2) = y2] = 1
|V |2 .

Notice that the third property is a pairwise independence property, saying that knowing where one item
is hashed does not give any information about where another item is hashed. The following is an example
of such a family of hash functions.
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Example 9.1. Let U = {0, 1}n = Fn2 , V = {0, 1}m = Fm2 . Choose an n ×m matrix A ∈ {0, 1}n×m =
Fn×m2 , and a vector v ∈ {0, 1}m = Fm2 . Then define hA,v(x) = Ax + v over F2. Let H be the set of all
such functions. Note the similarity to the functions used in the proof of the Valiant-Vazirani lemma. The
addition of the random vector v allows us to get around the fact that linear transformations always map the
vector 0 ∈ V to 0 ∈ V and ensure that for h chosen at random, the output is a random vector in V and
thus the second condition holds. The third condition holds by the same reasoning as in the proof of the
Valiant-Vazirani lemma.

The following lemma gives the basis for the set size lower bound protocol.

Lemma 9.6. Let S ⊆ U = {0, 1}n, V and a universal hash function family H from U to V . Select t = 2n
hash functions h1, . . . , ht ∈R H and s = 3n points r1, . . . , rs ∈R V .

A. If |S| ≥ |V |/2 then Pr[∃i, j such that rj ∈ hi(S)] ≥ 1− 2−n.

B. If |S| < |V |/d then Pr[∃i, j such that rj ∈ hi(S)] < 6n2/d.

Proof. Fix r ∈ V and i ∈ {1, . . . , t}. For any z ∈ U , Prh∈RH [h(z) = r] = 1
|V | by definition of H . If

|S| ≥ |V |/2, let S ′ consist of the first |V |/2 elements of S. By inclusion-exclusion, for h ∈R H ,

Pr[∃z ∈ S. h(z) = r] ≥ Pr[∃z ∈ S ′. h(z) = r]

≥
∑

z∈S′

Pr[h(z) = r]−
∑

z′ 6=z∈S′

Pr[h(z) = r and h(z′) = r]

= (
|S′|
|V | −

|S′|(|S′| − 1)

2
) · 1

|V |2
≥ 1/2 − 1/8 = 3/8

This implies that E[|h(S ′)|] =
∑

r∈V Pr[r ∈ h(S ′)] ≥ 3|V |/8. Now consider the probability that
Prh∈RH [|h(S′)|] ≥ |V |/4? Using the fact that for any h, |h(S ′)| ≤ |S′| ≤ |V |/2, a standard Markov’s
inequality argument shows that this probability is at least 1/2: Suppose the probability is < 1/2. Then
E[|h(S′)|] < 1

2 · |V |/2 + 1
2 |V |/4 = 3|V |/8, contradicting our lower bound on E[|h(S ′)|].

Therefore if we choose h1, . . . , hn+1 ∈R H ,

Pr
h1,...hn+1∈RH

[∃i. |hi(S′)| ≥ |V |/4] ≥ 1− 2−2n.

Suppose now that this holds. Thus the probability that every rj ∈R V is /∈ ⋃
i hi(S

′) is at most 3/4
and the choices are independent. Therefore the probability that none of the rj is in

⋃
i hi(S) is at most

(3/4)s < 2−n−1 for s = 3n. Thus the total failure probability is at most 2−n.

Now suppose that |S| ≤ |V |/d. Then |⋃i=1 thi(S)| ≤ t|S| and thus

Pr[∃i, j, such that rj ∈ hi(S)] ≤ st |S||V | ≤ 6n2/d

as required.

Thus, for Merlin to prove to Arthur that a set S ∈ {0, 1}n is large relative to some bound 2b, we have
the following protocol:
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Merlin sends to Arthur The value of the bound b.

Arthur sends to Merlin A sequence of random bits interpreted as h1, . . . , h2n independently chosen hash
functions from {0, 1}n to V = {0, 1}b and r1, . . . , r3n independently chosen values from V = {0, 1}b.

Merlin send to Arthur A witness z ∈ S such that hi(z) = rj for some i and j.

If Merlin is unable to produce such a witness then the protocol fails. If |S| ≥ 2b then Merlin is able
to succeed with probability greater than 1 − 2−n; if |S| is much smaller than 2b then the protocol will only
have a polynomially small success probability. It is important that Arthur can play this protocol even if the
set S is implicit or known only to Merlin. The only difference is that if the set S is too small then Merlin is
likely forced to produce a witness z ∈ {0, 1}n − S. Later Arthur may catch Merlin because of this. We will
use this property in sequel.

Note. Note that we could have refined the above argument somewhat by taking advantage of the fact that
all we need is

⋃
i hi(S) to be large rather than any individual hi(S). A small modification of the above

argument will show that

E[|hi(S′)−
⋃

i′<i

hi′(S
′)|] ≥ 3|V −

⋃

i′<i

hi′(S
′)|/8.

Since the maximum value this quantity can take is at most |V − ⋃
i′<i hi′(S

′)|, the probability that it is at
least 1/4 of this maximum value is at least 1/6 and these events are mutually independent. Thus a constant
fraction of the time each additional hash function reduces the size of the uncovered portion of V by a
constant factor. By choosing O(n) independent hash functions (or even O(b) if a failure probability only
at most 2−b is required) we can assure almost certainly that every point of V is covered by the image of S ′

under some hash function. Thus, only a single random query r is required.

Protocol Overview By the amplication lemma we can assume that that (P, V (r))(x) accepts with very
high probability if x ∈ L and any (P ∗, V (r))(x) accepts with at most exponentially small probability.

Suppose that the set of all random strings used by the verifier V is chosen from {0, 1}`. Merlin contends
that the set of random strings for which V would have been convinced is not very small, say at least 2`−1.
Let Aε = {r | (P, V (r)) accepts} be this set of random strings. We need to decide whether or |Aε| is nearly
2` or exponentially smaller than 2`.

We first will assume that IP protocol is a 2-round protocol of the style that was used for GRAPH-NON-
ISOMORPHISM in which the verifier V first sends a string z and then the prover P sends a string y to the
verifier who makes a final decision based also the random string.

Let z = V (x, ε, r), the string that V would have been sent to P given the random string r ∈ {0, 1}`.
Associated with each message z that V sends in this round there is an optimal response string y = y(z) that
maximizes the probability that V (x, (z, y), r) accepts. (Assume without loss of generality that z ∈ {0, 1}m .)
Now define the set

Az = {r | z = V (x, ε, r) and V (x, (z, y(z)), r) accepts },
the set of all random strings r such that the verifier initially sent z, the prover can respond with y(z) and the
verifier will accept. Clearly Aε =

⋃
z Az where the union is disjoint.

The goal is to give a protocol for an AM protocol that allows Arthur to be convinced that the Verifier
would have accepted this input under the AM acceptance condition. Merlin will do this by proving to Arthur
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that with large probability there is a large set of z such that Az is large. To do this, Merlin will choose a set
S1 of z’s each of which has roughly the same size.

The Set S1 a: Command not found. where we have chosen b1 to maximize |⋃z∈S1
Az|. That is, we put

the Az into buckets based on the order of magnitude of their size; after binning, we choose the bin that
contributes the most to Aε. By construction,

• ∑
z ∈ S1|Az| ≥ |Aε|

` and

• for each z ∈ S1, 2b1−1 < |Az| ≤ 2b1 .

Merlin will pick the set S1 and send the value s1 = dlog2 |S1|e to Arthur and convince Arthur that S1 is
large relative to 2s1 . In doing this using the set size lower bound protocol, Merlin will identify and element
z ∈ S1. He will then prove that Az is large relative to 2b1 . If b1 + s1 is large enough, Arthur will accept.

These will be done by applications of the hashing protocol above. As a result, Arthur can be convinced
of the truth of the assertion if we show him that the set is at least a constant fraction 2`

` .

The Protocol

• M → A: (Round 0)

Merlin computes the set S1, the value b1 and sends s1 = dlog2 |S1|e and b1 to Arthur.

• A→M : (Round 1)

Arthur sends 2` random hash functions h1, . . . , h2` from {0, 1}m to {0, 1}s1 and 3` random
challenge strings r1, . . . , r3` ∈R {0, 1}s1 to Merlin.

Arthur sends 2` random hash functions h′1, . . . , h
′
2` from {0, 1}` to {0, 1}b1 and 3` random chal-

lenge strings r′1, . . . , r
′
3` ∈R {0, 1}b1 to Merlin.

• M → A: (Round 2)

Merlin produces a string z ∈ S1 such that hi(z) = rj for some i and j if possible. (Otherwise
Merlin chooses an arbitrary string z that maps to one of the rj’s if possible.)

Merlin sends (z, y(z)) as well as (i, j) to Arthur.

Merlin produces a string r ∈ Az such that h′i′(r) = r′j′ for some i′ and j′ if possible. (Otherwise,
Merlin chooses an arbitrary string r that maps to one of the rj’s if possible.)

Merlin sends r as well as (i′, j′) to Arthur.

• Verify: In the final deterministic verification Arthur checks that hi(z) = rj , that h′i′(r) = r′j′ , that
V (x, ε, r) = z, that V (x, (z, y), r) accepts (i.e., that r ∈ Az), and that s1 + b1 ≥ `− log2 `− 1.

Now let us verify that this yields a good Arthur-Merlin protocol.
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If Prr[(P, V (r))(x) = 1] > 1/2: In this case, |Aε| > 2`−1 and thus
∑

z∈S1

|Az| ≥ |Aε|/` > 2`−1/` ≥ 2`−log2 `−1.

Since |S1| ≥ 2s1−1, by Lemma 9.6, Merlin will be able to find the required z ∈ S1 with failure probability
at most 2−`. Then for this z, |Az| ≥ 2b1−1 so again by Lemma 9.6 and the definition of Az , Merlin will be
able to find an r such that h′ hashes r correctly, V (x, ε, r) = z, and V (x, (z, y), r) accepts. Finally, observe
that ∑

z∈S1

|Az| ≤
∑

z∈S1

2b1 = |S1| · 2b1 ≤ 2b1+s1

and thus b1 + s1 ≥ `− log2 `− 1.

If Prr[(P, V (r))(x) = 1] < 1/`7: In this case |Aε| ≤ 2`/`7. Suppose that Merlin tries to cheat Arthur.
What is the chance that Arthur will be convinced? In order for Arthur to be convinced Merlin must send b1

and s1 in Round 0 such that b1+s1 ≥ `−log2 `−1, that is, 2b1+s1 ≥ 2`

2` . Choose d = `3. Let S′
1 be the set of

all z such that |Az| ≥ 2b1/d. The size of S ′
1 is at most d·|Aε|/2b1 ≤ 2`−b1/`4 ≤ 2s1+log2 `+1/`4 = 2s1+1/d.

The probability that Merlin could produce an element z of S ′
1 in response to the hash challenge for S1 is

O(`2/d) which is O(1/`). If Merlin does not produce such an element then the probability that Merlin is
able to produce an element r for Az that will convince Arthur is also only O(1/`). Therefore, the total
probability that Arthur is convinced in this case is O(1/`).

This proves correctness in the two round case.

More Rounds In general, for a procotol with more rounds, note that for any prefix of the computation,
once r is fixed, whether or not V will accept beginning with that prefix is a deterministic property using the
optimal play of Merlin. Therefore once Merlin fixes (z1, y1(z1)) for his first response, we can define sets

Az1,z = {r | V (x, ε, r) = z1 and V (x, (z1, y1(z1)), r) = z and V (x, (z1, y1(z1), z, y2(z), . . .), r) accepts },

Az1,z2,z = {r | s = (z1, y1(z1), z2, y2(z2), z, y3(z)) is a valid execution on input x and V (x, (s . . .), r) accepts },
etc. At each round, Merlin will choose an Si consisting of those z in the highest weight bin for the sets
Az1,...,zi−1,z . At each round, Merlin will send Arthur si = dlog2 |Si|e and convince Arthur that |Si| ≥ 2si−1

by sending zi and yi(zi). For the last round of the prover’s communication, Merlin will send bk in addition
to sk, and convince Arthur that |Az1,...,zk

| ≥ 2bk by sending a choice of r. If there are 2k rounds beginning
with then Arthur then there will be a loss of `k in the size of |Aε| at most so Arthur will accept if all the
hash conditions have been met, the final random string and the sequence of zi and yi will yield acceptance,
and bk +

∑k
i=1 si ≥ `− k log2 `− 1. By a similar argument to the 2 round case, if the original acceptance

probability is at most 1/`8k−1, then Arthur is convinced only an O(k/`) fraction of the time.

Number of Rounds Notice how many rounds it took to prove the claim. In the new protocol we have
added one communication from Merlin to Arthur of the set size s1 (and b1 in the two round case) at the
beginning and one communication at the end for Merlin to send Arthur the random string r in response to
the last challenge. If the protocol already began and ended with Arthur then this adds two rounds. If the
protocol already began or ended with Merlin (as in the 2 round case) then we add fewer rounds.
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10.1 The Collapse Lemma

The main lemma of this lecture is the following:

Lemma 10.1 (Babai). MA ⊆ AM = AM[k] = MA[k + 1], for any constant k. That is, AM can simulate
any constant round Arthur-Merlin game.

Proof. Suppose that there are two rounds of the Arthur-Merlin game that go in sequence MA.... We show
how to simulate them by a modified game that begins AM... and has the same alternation pattern after the
first two rounds. This will be enough to prove the claim because it will also allow us to convert any game
sequence AMA... to AAM... = AM... and MAM... to AMM... = AM....

It is somewhat intuitive that AM should be more powerful than MA, because in the former Merlin gets
to look at the random bits before deciding on his answer. The argument first shows that one can bound the
increase in Merlin’s power and then use amplification of the original protocol to ensure that this increase in
Merlin’s convincing power is not enough to allow him to cheat.

Start with a zero-one random variable V (x, y, r). Think of V as determining whether the protocol
accepts in the remaining rounds. Define H(x, yr) = Pr[V (x, y, r) = 1], where the probability is over
remaining rounds of the protocol (not r). Let Ψ(x) = MyAr H(x, y, r) be the probability that theMA...
protocol accepts x. Also, say that the ys are taken from the set Y and the rs are taken from the set R. We
use A for averaging over the set R and M for maximizing over the set Y .

Lemma 10.2. For any function H , ArMy H(x, y, r) ≤ |Y |MyAr H(x, y, r).

This quantifier swap will be the basis for simulating the MA... protocol by an AM... protocol. The size
of Y will be exponential in the length of x, so we lose a lot of accuracy by switching from MA to AM, but
we will show that this loss can be counteracted by amplifying the success probability of the original protocol
sufficiently using amplification for Arthur-Merlin games which is essentially a variant of the amplification
from Lemma 9.2.

Proof. We can get a crude upper bound on the maximum y by summing over all choices of y:

ArMy H(x, y, r) ≤ ArΣy∈Y H(x, y, r)

54
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The averaging quantifier is really just a summation divided by the number of terms in the summation, so it
commutes with the sum over y:

ArMy H(x, y, r) ≤ Σy∈YAr H(x, y, r)

Next we upper bound the sum over y by the maximum y times the number of choices of y:

ArMy H(x, y, r) ≤ |Y |MyAr H(x, y, r)

This gives the desired bound.

Back to the proof of the main lemma, we started with an MA... protocol, which looks like

∃y Rr V (x, y, r) = 1

Our new protocol will start by picking a sequence of random strings, r1 . . . rm ∈ R, where m is polynomial
in the length of x. Our new AM protocol will look like

Rr1 . . . rmMy Majoritymi=1(V (x, y, ri)).

Lemma 10.3. The acceptance probability of the new AM... majority protocol is

1− 2m(1−Ψ(x))m/2 ≤ A(r1 . . . rm)My Majorityi(V (x, y, ri)) ≤ 2m|Y |Ψ(x)m/2

Proof. We will prove the lower bound first. For the protocol to reject, at least half of the ris must lead to a
rejection. This give us

∃I ⊆ {1 . . . m}, |I| = dm/2e such that V (x, y, ri) rejects for all i ∈ I.

In the new AM protocol Merlin could send the same string as in the MA protocol irrespective of the random
string ri. This would give the same success probability Ψ(x), which we will use as a lower bound for the
success of one invocation of V (x, y, ri). Then we have

Pr[all trials in I fail] ≤ (1−Ψ(x))|I|

= (1−Ψ(x))m/2

We can upper bound the number of choices of I by 2m, so

total failure probability ≤ 2m(1−Ψ(x))m/2

This gives the lower bound on success claimed in the lemma.

For the upper bound we use the same definition of I , but want all trials in I to accept. This happens with
probability:

Pr[∀i ∈ I. V (x, y, r) = 1] = Πi∈I Pr[V (x, y, r) = 1]

= Πi∈IH(x, y, r)
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For any fixed y, we can average over the choices of r1 . . . rm:

A(r1 . . . rm) Majorityi(V (x, y, ri)) ≤
Σr1...rm∈RmΣI⊆1...m,|I|=dm/2eΠi∈IH(x, y, ri)

|R|m

≤ ΣI
Σr1...rm∈RmΠi∈IH(x, y, ri)

|R|m

We can replace the average over elements of Rm with an average over elements of RI since only indices
from I affect the probability, so:

A(r1 . . . rm)Majorityi(V (x, y, ri)) ≤ ΣI
Σ~r∈RI Πi∈IH(x, y, ri)

|R||I|

= ΣIΠi∈I

(
Σri∈R

H(x, y, ri)

|R|

)

= ΣI (Ar H(x, y, r))m/2

Now replace the arbitrary y with the best possible y:

MyA(r1 . . . rm) Majorityi(V (x, y, ri)) ≤ ΣI (MyArH(x, y, r))m/2

= ΣI(Ψ(x))m/2

≤ 2mΨ(x)m/2

Combining this with lemma 10.3 we get

A(r1 . . . rm)My Majorityi(V (x, y, ri)) ≤ 2m|Y |Ψ(x)m/2

Now that we have established the bounds we will set the value of the parameters. Letm = 2 log2 |Y |+4.
Assume without loss of generality that for x /∈ L, Ψ(x) ≤ 1/8 and for x ∈ L, Ψ(x) ≥ 7/8. Then the
probability of the new AM protocol accepting an x /∈ L is at most:

A(r1 . . . rm)My Majorityi(V (x, y, ri)) ≤ 2m|Y |Ψ(x)m/2

≤ 2m2−3m/2|Y |
= 2− log2 |Y |−2|Y |

=
1

4
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The probability of accepting an x ∈ L is at least:

A(r1 . . . rm)My Majorityi(V (x, y, ri)) ≥ 1− 2m(1−Ψ(x))m/2

≥ 1− 2m(
1

8
)m/2

= 1− 2−m/2

= 1− 2− log2 |Y |−2

= 1− 1

4|Y |

≥ 3

4

This concludes the proof.

10.2 Variable-round games

The proof in the last section allows any constant number of Arthur-Merlin rounds to be reduced to a single
AM round. This can’t be extended directly to variable round protocols because there is a polynomial blowup
in each switch, which would lead to an exponential blowup in variable round protocols. The following
lemma allows for variable round reductions. We will only outline the idea of the proof.

Lemma 10.4 (Babai-Moran). AM[2t(n)] ⊆ AM[t(n) + 1].

Proof Sketch. The main idea is to convert a single MAM round to an AMA round. As before, Arthur will
start by sending a collection of random seeds r1 . . . rm. After Merlin gives a response y1 . . . ym as well as
z1, dotsczm, Merlin’s responses for the third round of the game given the correspond choices of yi and ri.
Arthur sends a random i ∈ {1 . . . m}. The protocol the proceeds as if the original game had been played
with the sequence yi, ri, zi had been the only interaction so far. This leaves no blowup in the number of
games that must be continued (although there is a polynomial blow-up for this triple of rounds). This allows
all the MAM seqeunces to be replaced by AMA sequences in parallel with a single polynomial size blow-up.
The general idea is that if the overwhelming majority of continuations don’t allow Merlin to cheat too much
then Arthur will likely pick one on which he won’t be fooled.

10.3 AM games and the Polytime Hierarchy

We can now relate Arthur-Merlin games and the polynomial time hierarchy.

Lemma 10.5. AM ⊆ Π2P

Proof. The proof is a direct analogue of the Sipser-Gacs-Lautemann proof of BPP ⊆ Σ2P ∩ Π2P (see
Lecture 3 Theorem 3.5). In that proof we defined S = {r | M(x, r) = 1} to be the set of random strings
that lead to acceptance of M on input x. We then gave a Σ2P algorithm that accepts the input x if and only
if the set S is large. Since BPP is closed under complement, by applying the protocol to S̄ we obtain a Σ2P

algorithm for Ā and thus a Π2P algorithm for L. In particular, this Π2P expression says that x ∈ A if and
only if

∀t1 . . . tp(|x|) ∈ {0, 1}p(|x|)∃p(|x|)r for all j ∈ {1, . . . , p(|x|)}. M(x, r ⊕ tj) = 0.
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(Since there are only p(|x|) values of j the inner portion can be recognized in polynomial time.)

For the current proof we view AM as BP · NP, and the set S associated with a language L defined by an
AM protocol with verifier V is S = {r | ∃y V (x, y, r) = 1}. The new expression is then

∀t1 . . . tp(|x|) ∈ {0, 1}p(|x|)∃p(|x|)r such that for all j ∈ {1, . . . , p(|x|)}, ∃y V (x, y, r ⊕ tj) = 0,

which is equivalent to

∀t1 . . . tp(|x|) ∈ {0, 1}p(|x|)∃p(|x|)r∃(y1, . . . , yp(|x|)) s.t. for all j ∈ {1, . . . , p(|x|)}, V (x, yj , r ⊕ tj) = 0.

This is a Π2P expression for L.

Lemma 10.6. MA ⊆ Σ2P ∩Π2P

Proof. We can view MA as N · BPP. We know that BPP has a Σ2P representation. Adding on another
existential quantifier for the Merlin step gives a language that is still in Σ2P, so MA ⊆ Σ2P. We know that
MA ⊆ AM, and that AM ⊆ Π2P, so MA ⊆ Π2P as well.

10.4 Graph Isomorphism is unlikely to be NP-complete

With the results from today we can easily show that GRAPH-ISOMORPHISM being NP-complete leads to
the polynomial time hierarchy collapsing.

Lemma 10.7. If coNP ⊆ AM then PH = Σ2P ∩Π2P = AM.

Proof. Let L ∈ Σ2P. We will show that under the assumption coNP ⊆ AM we get L ∈ AM ⊆ Π2P, which
causes the hierarchy to collapse at the second level. Since L ∈ Σ2P, by Theorem 2.2 we can express L as

L = {x | ∃p(|x|)y. (x, y) ∈ L1}

where L1 ∈ coNP}. If coNP ⊆ AM then L1 ∈ AM, so L ∈ MAM by treating the existential quantifier as a
Merlin step. But by the collapse lemma from this lecture, MAM = AM ⊆ Π2P, and the hierarchy collapses
to Σ2P = AM = Π2P.

Corollary 10.8. If GRAPH-ISOMORPHISM is NP-complete then PH = Σ2P ∩Π2P = AM.

Proof. If GRAPH-ISOMORPHISM is NP-complete then GRAPH-NONISOMORPHISM is coNP-
complete. We know from last lecture that GRAPH-NONISOMORPHISM ∈ AM, implying that coNP ⊆
AM. From the above lemma this causes the polynomial time hierarchy to collapse as in the conclusion.
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11.1 IP and PH

Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the
predicate PERM(A) = k.

Before we prove this theorem we note a number of corollaries.

Corollary 11.2. There exist polynomial length interactive proofs for all of #P.

Corollary 11.3. PH ⊆ IP

This is surprising, because a constant number of alternations is equivalent to two alternations, but an
unbounded number yields PH. Later, we will prove that there exist interactive proofs for everything in
PSPACE.

Proof of Corollaries. These follow from the easy observation that IP is closed under polynomial-time (Tur-
ing) reduction and by Toda’s theorem.

Remark. In the journal version of their paper, Lund, Fortnow, Karloff, and Nisan gave an alternative direct
protocol proving Corollary 11.2. This proof is given in full in Sipser’s text. We present the protocol for
the permanent directly both because it is interesting in its own right and because the permanent problem
motivates the whole approach for these proofs.

Proof of Theorem 11.1. We perform the computation of PERM over some finite field F, where |F| > 10n3.
We also assume that {1, . . . , n} ⊂ F, although we can remove this restriction by simply choosing n distinct
field elements of F that can substitute for {1, . . . , n}.

Recall the definition of PERM:

PERM(A) =
∑

σ∈Sn

n∏

i=1

ai,σ(i)

where ai,j is the element in the ith row and jth column of matrix A and Sn is the set of all permutations
from {1, . . . , n} to itself.

Note that PERM is a multivariate polynomial in the inputs, with total degree n and degree at most 1 in
each variable ai,j . Furthermore, we can define PERM recursively via the following self-reduction:

59
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Definition 11.1. Let A(i|j) be the (n − 1) × (n − 1) matrix equal to A with its ith row and jth column
removed.

Claim 2. PERM(A) =
∑n

`=1 a1,`PERM(A(1|`)).

The proof for this reduction is by direct application of the definition:
n∑

`=1

∑

σ ∈ Sn,
σ(1) = `

n∏

i=1

ai,σ(i) =
n∑

`=1

a1,`

∑

σ∈Sn

n∏

i=2

ai,σ(i)

=

n∑

`=1

a1,`

∑

σ∈Sn−1

n−1∏

i=1

ai′,σ′(i′)

where i′ = i+ 1 and σ′(i′) =

{
σ(i′) for σ(i′) < `

σ(i′) + 1 for σ(i′) ≥ `

=

n∑

`=1

a1,` · PERM(A(1|`)).

To prove that PERM(A) = k, it suffices to prove the values of PERM(A(1|`)) for ` = 1, . . . n. Of
course, a fully recursive algorithm would yield n! subproblems, saving us nothing over direct computation.
Instead, the prover will give one proof that gives allows us to recursively prove values for all PERM(A(1|`))
via a single proof rather than n separate proofs.

To do this we will use a representation of these values of the permanent as polynomials. The following
are the two basic properties of polynomials that we will use.

Proposition 11.4. If p 6= 0 is a degree d univariate polynomial over F then p has at most d roots.

Corollary 11.5. For any degree d univariate polynomial f 6= 0 over F, Prr∈RF[f(r) = 0] ≤ d/|F|.
Proposition 11.6. (Interpolation Lemma) Given any distinct set of points {b1, . . . bn} ⊂ F and any (not
necessarily distinct) {c1, . . . , cn} ⊂ F there is a degree n univariate polynomial p ∈ F[x] such that p(bi) =
ci for i = 1, . . . , n.

Basic Idea Write B(`) = A(1|`). Then

B(`) =




b1,1(`) · · · b1,n−1(`)
...

. . .
...

bn−1,1(`) · · · bn−1,n−1(`)




Each bi,j(`) is a function: {1, . . . , n} → F. By the interpolation lemma, there are degree n polynomials
pi,j(z) such that pi,j(`) = bi,j(`) for ` = 1, . . . n. Write B(z) for this matrix of polynomials. Then
B(`) = A(1|`) for ` = 1, . . . , n but is also defined for other values of z.

Given this matrix of polynomials B(z),

PERM(A) =
n∑

`=1

a1,`PERM(B(`))

Observe that:
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A. PERM(B(z)) is a degree (n− 1)n univariate polynomial over F.

B. Given A, both players can compute what B(z) is.

Interactive protocol to prove that PERM(A) = k

• Prover computes f(z) = PERM(B(z)) and sends the n(n− 1) + 1 coefficients of f to the verifier.

• Verifier checks that
∑n

`=1 a1,`f(`) = k. If good, chooses r1 ∈R F and sends it to the prover.

• Prover continues with a proof that PERM(B(r1)) = f(r1).

The proof continues until matrix size is one. In that case the Verifier computes the permanent directly by
checking that the single entry of the matrix is equal to the claimed value for the permanent.

Note. Note that is very important in this protocol ri could take on a value larger than n. In other words,
B(ri) might not be a submatrix of A at all.

Clearly, if PERM(A) = k then the prover can always convince the verifier.

Suppose that PERM(A) 6= k. At each round there is an i × i matrix Ai and an associated claimed
value ki for the permanent of Ai where An = A and kn = k. The Prover can cause the Verifier to accept
only if PERM(A1) = k1. Therefore in this case there is some round i such that PERM(Ai) 6= ki but
PERM(Ai−1) = ki−1. Let B(z) be the (i− 1)× (i− 1) polynomial matrix associated with Ai and f(z) be
the degree i(i−1) polynomial sent by the Prover in this round. Either f(z) = PERM(B(z)) as polynomials
or not.
If f(z) = PERM(B(z)), then

∑n
`=1 a1,`f(`) =

∑n
`=1 a1,`PERM(B(`)) 6= k, and the verifier will reject

the proof immediately.
If f(z) 6= PERM(B(z)), then f(z) − PERMB(z)) 6= 0 and therefore Prr∈RF[f(r) = PERM(B(r))] ≤
i(i − 1)/|F|. In other words, the probability that the prover can “fool” the verifier in this round is at most
i(i − 1)/|F|. Therefore, the total probability that the Prover succeeds in convincing the Verifier of an
incorrect value is at most

∑n
i=2 i(i − 1)/F < n3/|F| ≤ 1/10 for |F| ≥ 10n3. (In fact, the sum is at most

(n3 − n)/(3||) so |F| ≥ n3 suffices.)

The above proof shows that there are interactive proofs for coNP. A constant number of rounds is
unlikely unless the polynomial-time hierarchy collapses. However, in the above protocol the prover requires
the ability to solve a #P-hard problem.

Open Problem 11.1. What prover power is required to prove coNP ⊆ IP?

11.1.1 Low Degree Polynomial Extensions

A key idea of the above argument was to use low degree polynomial extensions. This involves taking a
function f : I → F, in this case I = {1, . . . , n}, extending it to a polynomial Pf : F→ F, and checking Pf
on random points of F.

To apply this we used the fact that the function in question we wished to compute could be expressed as
a multivariate polynomial of low total degree.
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11.2 IP equals PSPACE

In this section we prove the following characterization theorem for IP.

Theorem 11.7 (Shamir, Shen). IP = PSPACE

Proof. (Following Shen.) We will prove the hard direction, namely that PSPACE ⊆ IP; the other direction
is left as an exercise.

The key idea of this proof will also involve low degree polynomial extensions. In order to use this we
need the following facts about finite fields.

A. For any integer n, there exists a prime p such that n ≤ p ≤ 2n.

B. For any prime p and integer k ≥ 0, there exists a finite field Fpk with pk elements.

We construct an IP protocol for TQBF using low-degree polynomial extensions over a small finite field
F. Specifically, we can choose a small field F with n3m ≤ |F| ≤ 2n3m, where m is the number of 3-CNF
clauses and n is the number of variables in the TQBF formula Ψ = ∃x1∀x2 · · ·Qnxnψ(x1, . . . , xn) where
ψ is a 3-CNF formula.

11.2.1 Arithmetization of Boolean formulas

Create multivariate polynomial extensionds for Boolean formulas as follows:

f ∧ g 7→ Pf · Pg
xi 7→ xi
¬f 7→ (1− Pf )

(f ∨ g) = ¬(¬f ∧ ¬g) 7→ 1− (1− Pf )(1− Pg).

We use the notation Pf ~ Pg as a shorthand for 1 − (1 − pf )(1 − pg). Applying these operations
Pψ(x1, . . . , xn) is of degree ≤ m in each variable, with a total degree of ≤ 3m.

Continuing this in the obvious way we obtain that

P∀xnf (x1, . . . , xn−1) = Pf (x1, . . . , xn−1, 0) · Pf (x1, . . . , xn−1, 1)

and
P∃xnf (x1, . . . , xn−1) = Pf (x1, . . . , xn−1, 0) ~ Pf (x1, . . . , xn−1, 1).

We want to know if PΨ() = 1. The obvious analog to our proof for PERM has a problem: the degree of
the polynomial doubles at each quantification step and thus the univariate polynomials we will create will
have exponential degree. The solution rests on the fact that our polynomial need only be correct on inputs
over {0, 1}, which yields only two points per variable. Thus a polynomial of linear degree in each variable
will suffice. For this purpose we introduce a new degree reduction operation Rxi.

Definition 11.2. PRxif (x1, . . . , xn) = xi · Pf (x1, . . . , xi−1, 1, xi+1, . . . , xn) + (1 − xi) ·
Pf (x1, . . . , xi−1, 1, xi+1, . . . , xn)



LECTURE 11. IP, PH, AND PSPACE 63

We now replace Ψ by the formal sequence

Ψ0 = ∃x1Rx1∀x2Rx1Rx2∃x3Rx1Rx2Rx3 · · ·QnxnRx1Rx2 · · ·Rxnψ(x1, . . . , xn).

While the ∃ and ∀ operators increase the polynomial degree, the R operators bring it back down to at
most one in each variable.

11.2.2 An Interactive Protcol for PSPACE

Using the arithmetization discussed earlier, we now show that the prover can convince the verifier in poly-
nomial time.

First, the Prover claims to the Verifier that PΨ0() = 1. At stage j of the interactive proof there will be
some fixed values r1, . . . , rk ∈ F chosen by the Verifier so far and a value aj ∈ F for which the Prover will
be trying to convince the Verifier that PΨj (r1, . . . , rk) = aj .

There are several different cases, depending on the form of Ψj .

Ψj = ∀xk+1Ψj+1: In this case, the Prover computes fj+1(z) = PΨj+1(r1, . . . , rk, z) and transmits the coefficients of
fj+1. The Verifier checks that fj+1(0) · fj+1(1) = aj (which should be PΨj (r1, . . . , rk)). If not, the
Verifier rejects; otherwise, the Verifier chooses rk+1 ∈R F and sends rk+1 to the Prover. The new
value aj+1 = fj+1(rk+1) and the protocol continues as the Prover tries to convince the Verifier that
PΨj+1(r1, . . . , rk+1) = aj+1.

Ψj = ∀xk+1Ψj+1: In this case, the Prover computes fj+1(z) = PΨj+1(r1, . . . , rk, z) and transmits the coefficients of
fj+1. The Verifier checks that fj+1(0) ~ fj+1(1) = aj (which should be PΨj (r1, . . . , rk)). If not,
the Verifier rejects; otherwise, the Verifier chooses rk+1 ∈R F and sends rk+1 to the Prover. The new
value aj+1 = fj+1(rk+1) and the protocol continues as the Prover tries to convince the Verifier that
PΨj+1(r1, . . . , rk+1) = aj+1.

Ψj = RxiΨj+1: In this case, the Prover computes fj+1(z) = PΨj+1(r1, . . . , ri−1, z, ri+1, . . . , rk−1) and transmits
the coefficients of fj+1. (Unlike the other two cases there may be many coefficients and not just
two coefficients.) The verifier checks that (1 − ri)fj+1(0) + rifj+1(1) = aj (which should be
PΨj (r1, . . . , rk)). If not, the Verifier rejects; otherwise, the Verifier chooses r ′i ∈R F and sends r′i to
the Prover. The new value aj+1 = fj+1(r

′
i) and the protocol continues as the Prover tries to convince

the Verifier that PΨj+1(r1, . . . , ri−1, r
′
i, ri+1, . . . , rk) = aj+1.

In the base case when there are no quantifiers, the Verifier simply evaluates Pψ(r1, . . . , rn) and accepts if
and only if the result is correct.

The total number of stages is n+n(n− 1)/2: one stage for each existential or universal quantifier, plus∑n
i=1 i stages for the R quantifiers. The maximum degree in any stage is no more than the greater of 2 and

m, the number of clauses in ψ.

Clearly, if the values are correct, then the Prover can convince the Verifier at each stage by sending the
correct polynomial for fj+1.

In case PΨ0() 6= 1, if the Verifier accepts then there is some stage at which PΨj (~r) 6= aj but PΨj+1(~r
′) =

aj+1. If the Prover sends the correct coefficients of fj+1 then the Verifier will immediately reject because
the Verifier directly checks that the Prover’s answers reflect the recursive definition of PΨj . If the Prover
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sends the incorrect coefficients for fj+1 then the chance that the Verifier chooses a random value r on which
aj+1 = fj+1(r) = PPsij+1(. . . , r, . . .) is at most the degree of fj+1 divided by |F| which is at most m/|F|.

By the union bound, the total failure probability is therefore less than:

(n(n−1)
2 + n)m

|F|

which for |F| ≥ mn3 yields failure probability less than 1/n.
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12.1 Probablisitically Checkable Proofs Overview

We know that IP = PSPACE. This means there is an interactive protocol between a prover P and a verifier
V such that

Ψ ∈ TQBF → (P, V ) accepts Ψ with probability 1

Ψ /∈ TQBF → (P, V ) accepts Ψ with Probability ≤ 1

2
.

Suppose that we wanted to express the entire strategy of the prover in this protocol for all possible
interactions with a verifier. This strategy would consist of a rooted tree of the possible interactions, where
each node of the tree corresponds to the state of the system between rounds of communication and the edges
are labelled by the values sent during the rounds. At each round, the verifier sends a polynomial number
of random bits (in the size N of the input Ψ) so each node just before a verifier move has fan-out 2N

O(1)
.

Each node just before a prover move has fan-out 1 which lists the prover’s (best) response to the previous
communcation. The entire tree has depth NO(1). Because of the depth and fan-out of the tree, it has 2N

O(1)

nodes overall.

Thus, the IP protocol corresponds to a table of size 2N
O(1)

of which the protocol accesses/queries only
NO(1) bits determined by the choice ofNO(1) random bits. PCP is a generalization of these proof techniques
along the two mentioned axes: the number of random bits and the number of queries allowed.

12.2 PCP definition

Think of a proof as a large table and the verification has access to only a small number of places in the table.
This is the main idea of probabilistically checkable proofs.

Definition 12.1. L ∈ PCP(r(n), q(n)) ⇔ ∃ a polynomial time oracle TM V ? with access to O(r(n))
random bits and that makes O(q(n)) queries to its oracle such that

x ∈ L → ∃ Π such that Pr
r

[V Π(x) accepts] = 1

x /∈ L → ∀ Π. Pr
r

[V Π(x) accepts] ≤ 1

2

65
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where Π denotes an oracle which we think of as a proof for L. Π is viewed as a table listing all the values
on which it can be queried.

Upper bound on |Π| How big does the proof table need to be? Think of a large table indexed by the
queries and the random strings, this case implies it is at most O(q(n))2O(r(n)). It follows that

Lemma 12.1. PCP(r(n), q(n)) ⊆ NTIME(2O(r(n))q(n)).

A more general formulation There are still two constants in our formulation 1 and 1
2 . We can generalize

PCP further by introducing the notions of the soundness and completeness of the proof system.

Definition 12.2. L ∈ PCPc,s(r(n), q(n)) ⇔ ∃ a polynomial time oracle TM V ? with access to O(r(n))
random bits and that makes O(q(n)) queries to its oracle such that

x ∈ L → ∃ Π such that Pr
r

[V Π(x) accepts] ≥ c (Completeness)

x /∈ L → ∀ Π. Pr
r

[V Π(x) accepts] ≤ s (Soundness)

This formulation is important for some hardness of approximation results. If the parameters are not
specified we assume the original formulation.

Definition 12.3. PCP(poly, poly) =
⋃
k PCP(nk, nk)

Remark. The definition of PCP(poly, poly) was originally motivated by a different way of extending the
idea of IP. This idea was to allow multiple all-powerful instead of just one prover. With such Multiprover
Interactive Proof systems the multiple provers can be used with the restriction that they may not collude with
each other. The set of languages proved in polynomial time in such settings was/is known as MIP. Later it
was shown that the languages in MIP are precisely those in PCP(poly, poly) and the oracle characterization
was used but results are still sometimes stated as results about MIP.

12.2.1 Results about PCP

Immediately from the motivating discussion for the definition of the PCP classes above we have IP ⊆
PCP(poly, poly) and thus the following lemma.

Lemma 12.2. PSPACE ⊆ PCP(poly, poly).

As a corollary to Lemma 12.1 we have

Lemma 12.3. PCP(poly, poly) ⊆ NEXP and for any polynomial q(n) we have PCP(log n, q(n)) ⊆ NP.

The main results about PCP are the following which show strong converses of the above simple inclu-
sions.

Theorem 12.4 (Babai-Fortnow-Lund). PCP(poly, poly) = NEXP.

The following result is so strong it is known as the PCP Theorem. It was the culimination of a sequence
improvements of the above result by Babai, Levin, Fortnow, and Szegedy, by Feige, Goldwasser, Lovasz,
Safra, and Szegedy and by Arora and Safra.
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Theorem 12.5 (Arora-Lund-Motwani-Szegedy-Sudan). NP = PCP(log n, 1).

It is interesting to note that the O(1) in the number of queries and can actually be reduced to 3 in the
strongest versions of the PCP Theorem. This is important for many of the results about approximation
problems. For example in approximating CLIQUE this stronger version is used to show that it is hard to
approximate CLIQUE with even an n1−o(1) factor.

Note that the PCP Theorem can be seens as a strict strengthening of the result of Babai, Fortnow, and
Lund since it yields the following corollary.

Corollary 12.6. PCP(poly, 1) = NEXP.

Over the next several lectures we will go over the proofs of these theorems. To begin with we need a
convenient characterization for NEXP.

12.2.2 A Complete Problem for NEXP

3SAT worked nicely as a complete problem for NP, so it is natural to look for an analog of 3SAT for NEXP.
In fact, the Cook-Levin tableau argument will again be our basis for showing completeness.

The analogous problem will be an implicitly defined version of 3SAT. First we will define a problem
ORACLE-3SAT that we will directly show to be NEXP-complete. ORACLE-3SAT will be 3SAT defined
on exponential size formulas in 3CNF defined on 2n variables and 2m clauses.

Definition 12.4. An oracle truth assignment is a function A : {0, 1}n → {0, 1} where we interpret A(v) =
1⇔ xv = 1.

Definition 12.5. An oracle 3CNF is a map C : {0, 1}m → {0, 1}3n+3 that specifies, given the index w ∈
{0, 1}m of a clause, the 3 variables in that clause and the three signs for those variables. For convenience, the
output C(w) be represented by a tuple (v1, v2, v3, s1, s2, s3) where v1, v2, v3 ∈ {0, 1}n, s1, s2, s3 ∈ {0, 1}
and the clause represented is xs1v1 ∨ xs2v2 ∨ xs3v3 where x0 denotes x and x1 denotes ¬x.

Definition 12.6. An oracle 3CNF C is satisfiable if and only if there exists an oracle truth assignment A
such that for all w ∈ {0, 1}m there exists an i ∈ {1, 2, 3} such that if C(w) = (v1, v2, v3, s1, s2, s3) then
A(vi) = si.

Definition 12.7. We will represent oracle 3CNF formulas using multi-output combinational circuits C com-
puting functions C : {0, 1}m → {0, 1}3n+3. Therefore we define

ORACLE-3SAT = {〈C〉 | C is a Boolean circuit representing a satisfiable oracle 3CNF}.

Lemma 12.7. ORACLE-3SAT is NEXP-Complete

Proof. Given a circuit C let m be the number of inputs to C and 3n + 3 be the number of outputs of
C . Given C , a NEXP machine can clearly guess and write down a truth assignment S for all 2n choices
of v ∈ {0, 1}n and then verify that for all 2m values of w, clause C(w) is satisfied by A. Therefore
ORACLE-3SAT ∈ NEXP.

Let L be an arbitrary language in NEXP. Now consider the Cook-Levin tableau for L and how this
converts first to a CIRCUIT-SAT problem and then to a 3SAT problem. For some polynomial p, The
tableau has width 2p(|x|) and height 2p(|x|). The first |x| entries in the first row depend on x; the remainder of
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the first row are based on generic nondeterministic guesses y and in the entire rest of the tableau the tableau
is very generic with each entry based on the 3 entries immediately above it in the tableau. Except for the
first entries in this table the complexity of each local window depends only on the complexity of the Turing
machine for L which is constant size and the only difference is the dependence of the first |x| entries on x.

Now consider the 3CNF formula that results from the reduction of the CIRCUIT-SAT formula which
simulates this tableau. Given the indices (i, j) in binary of a cell in the tableau it is easy to describe in
polynomial time what the connections of the pieces of the circuit are that simulates this tableau and therefore
what the pieces of the 3CNF formula are that will be produced as the 3CNF formula in the Cook-Levin proof.
Thus we have a polynomial-time algorithm C ′ that, based on the index of a clause, will produce a 3-clause
that is in an (exponential-size) 3CNF formula ϕ such that x ∈ L if and only if ϕ is satisfiable. Since C ′ is
a polynomial-time algorithm there is a polynomial size circuit C that simulates C ′; moreover it is very easy
to produce C given the input x and the description of the Turing machine for L. The reduction maps x to
〈C〉. Clearly x ∈ L if and only if 〈C〉 ∈ ORACLE-3SAT.

ORACLE-3SAT is slightly inconvenient to use for our purposes so we will use a variant of the idea
that includes as a single Boolean function both the output of the circuit and the verification of the 3-CNF
clause that it outputs. Suppose that C is a boolean circuit with g gates. Consider a function B which takes
as input: the original input w to C , a triple of 3 variables v1, v2, v3 output by C and purported values of each
of the gates of C and 3 binary values a1, a2, a3 and states that if on input w, the variables appearing in the
output clause of C are correctly represented in the input description for B and the values of the gates of C
are correctly represented in the input description to B then the signs of the clause output by C on input w
will evaluate to true if variable xv1 = a1, xv2 = a2 and xv3 = a3. Because we have included the values of
the internal gates of C we can easily express B as a Boolean formula based on C .

More formally: B : {0, 1}m+g+3n+3 → {0, 1} is defined as follows where |w| = m, |z| = g, |vi| = n,
and |ai| = 1.

B(w, z, v1, v2, v3, a1, a2, a3)

=
∨

s1,s2,s3

(C(w) = (v1, v2, v3, s1, s2, s3) and z represents values of the gates of C)→ ∃i. (si = ai)

The fact that B can represented as a Boolean formula simply mirrors the usual argument converting
CIRCUIT-SAT to SAT.

Notice that the definition of B implies that for an oracle assignment A,

A satisfies C ⇔ ∀w, z, v1, v2, v3 B(w, z, v1, v2, v3, A(v1), A(v2), A(v3)).

Definition 12.8. A Boolean formula B in h + 3n + 3 variables is a satisfiable implicit 3CNF formula iff
there is an oracle truth assignment A : {0, 1}n → {0, 1} such that ∀w′ ∈ {0, 1}h, ∀v1, v2, v3 ∈ {0, 1}n,
B(w′, v1, v2, v3, A(v1), A(v2), A(v3)) is true.

Definition 12.9. IMPLICIT-3SAT = {〈B〉 | B is a satisfiable implicit 3CNF formula }.

Clearly the conversion from 〈C〉 to 〈B〉 as defined above is polynomial time so we have that ORACLE-
3SAT is polynomial time reducible to IMPLICIT-3SAT and thus:

Theorem 12.8. IMPLICIT-3SAT is NEXP-Complete.

Now that we have a complete problem for NEXP, we need to show how to convince ourselves in the
required time bounds to achieve our goal of showing that NEXP = PCP(poly, poly).
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12.2.3 Verification procedure for an oracle truth assignment

1st idea The definition of the satisfiability of the implicit 3CNF B can easily be seen to be computation
that can be done in coNPA since there are only universal quantifiers other than the oracle calls and the
evaluation of B. Since coNPA ⊆ PSPACEA we could try to modify the IP=PSPACE to use an oracle.

This IP procotol relied on our ability to arithmetize formulas, like quantified versions of B that give
values over {0, 1}, to polynomials over a field F of moderate size. It then relied on the ability to query such
functions on randomly chosen field elements r ∈ F. In trying to apply the protocol here there is no problem
with arithmetizing B. However, so far, we only have an oracle A that gives Boolean outputs given an input
string v ∈ {0, 1}n; we would need to be able to evaluate A on elements of Fn instead.

Fortunately, we can do this by using a multilinear extension of A.

Definition 12.10. A function in n variables is multilinear if and only if it can be expressed as a multivariate
polynomial which has degree at most 1 in each variable.

Lemma 12.9. For any A : {0, 1}n → F there is a (unique) multilinear polynomial that extends A. That is
there exists a multilinear Â : Fn → F such that Â(v) = A(v) for v ∈ {0, 1}n.

Proof. Let Â(x) =
∑

v∈{0,1}n A(v)
∏
xi

∏
(1−xi). This is the desired multilinear polynomial. Uniqueness

is left as an exercise.

So we have two parts for the proof table so far: A table of the multilinear oracle Â and the full interaction

tree for the IPÂ protocol for the coNPÂ problem of verifying that Â satisfies B.

However, this is not enough. The prover might not produce a correct table of Â! Thus, in addition to
Â, the proof table must include part that allows the verifier to check with some certainty that Â really is a
multilinear extension of a truth assignment.

Actually, because the prover can only check a small part of the table there will be no way to convince
the verifier that the table Â really is multilinear. However, as we will see in the next lecture, we just need it
to be close to such an extension which is something the verifier will be able check.
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Last time we began the proof of the theorem that PCP(poly, poly) = NEXP.

We showed that IMPLICIT-3SAT is NEXP-complete where IMPLICIT-3SAT takes as input a Boolean
formula B defined on m′ +3n+3 variables where m′ = m+ g and B is in the language if and only if there
is an oracle truth assignment A : {0, 1}n → {0, 1} such that

∃A∀w, z, v1, v2, v3 B(w, z, v1, v2, v3, A(v1), A(v2), A(v3)).

(We interpreted w as an m-bit long clause index, z as gate variables, each vi as an n-bit long variable index
in the clause indexed by w, and A(vi) is the truth assignment to variable xvi .)

Given A, the verification that A satisfies B is in coNPA. This could be viewed as an oracle special case
of the IP = PSPACE protocol. An alternative to this is a sum-check protocol of Lund, Fortnow, Karloff,
and Nisan protocol for #P (given in Sipser’s text and discussed in the next lecture) which instead verifies
the value of ∑

w,z,v1,v2,v3

B(w, z, v1, v2, v3, A(v1), A(v2), A(v3)).

In either case we need to be able to convert B to a low degree polynomial in w, z, v1, v2, v3 over F

and evaluate that polynomial on random variables in F instead of {0, 1}. To do this we needed to be able
to evaluate A on such assignments so we use the fact shown last time that there is a (unique) multilinear
extension of an assignment A : {0, 1}n → F. Let A : Fn → F be this multilinear extension.

Thus the proof table gives values for A, as well as a full tree of all possible executions of the
prover’s strategy for a coNPA (IP = PSPACE style) proof that A is a satisfying assignment to
∀w, z, v1, v2, v3 B(w, z, v1, v2, v3, A(v1), A(v2), A(v3)). Such a tree is given in Figure 13.1.

This would be OK if the proof table correctly gives an A that really is multilinear. However, since the
verifier only will examine a polynomial number of places out of the exponentially many in the proof the
verifier can never be sure that the table truly is multilinear. The verifier will only be able to verify that the
table is close (in Hamming distance) to a multilinear function.

A useful property of the IP = PSPACE protocol (and the #P protocol) is that the final polynomial is
evaluated only once on random inputs chosen by the verifier. Thus on any run, the verifier will only examine
A in 3 places, randomly chosen by the verifier.

If A instead is merely close to a multilinear Â : Fn → F, such that say dist(A, Â) ≤ δ, then with
probability ≥ 1− 3δ the verifier will only see values on which A and Â agree and thus the additional error
contributed to the acceptance probability of the protocol by the difference between A and Â is at most 3δ.

70
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exponential size: 2nO(1), A is only checked at leaves

poly length: n
O

(1)

random move

random move

prover move

prover move

Figure 13.1: Proof Tree Corresponding to an Interactive Protocol

So we need to check that dist(A, Â) ≤ δ for some multilinear function Â. This is done using a multi-
linearity test that is a special case of a test that checks whether or not a polynomial has degree at most k in
each variable.

13.1 The Max-degree-k test

Definition 13.1. f : In → F is called max-degree-k iff it can be extended to f : Fn → F, that has degree at
most k in each variable.

Definition 13.2. For u1, . . . , un ∈ In an i-line is a set {(u1, . . . , ui−1, z, ui+1, . . . , un) | z ∈ I)}.

The following test is a generalization to a max-degree-k test of a multilinearity test due to Feige, Gold-
wasser, Lovasz, Safra, and Szegedy that improved on the original multilinearity test used by Babai, Fortnow,
and Lund. The following analysis is from Friedl, Hatsagi, and Shen.

Aligned Line Test: Choose k + 1 distinct elements a1, . . . , ak+1 ∈ I
Repeat t times:

(1) Choose i ∈R {1, . . . , n}

(2) Choose a random point (u1, . . . , un) ∈R |I|n

(3) Check that on the i-line through (u1, . . . , un) at ui, a1, . . . , ak+1, f looks like a de-
gree ≤ k polynomial, if not, reject. That is, check that f on the k + 2 points
(u1, . . . , un), (u1, . . . , ui−1, a1, ui+1, . . . , un), . . . , (u1, . . . , ui−1, ak+1, ui+1, . . . , un) fits a degree k
polynomial evaluated at ui, a1, . . . , ak+1.
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Figure 13.2: Aligned Line Test

In step (3) it would be more natural simply to check f on k + 2 random points on a randomly chosen i-line
but this version is both easier to analyze and uses less randomness.

Definition 13.3. Let P (n, k) = {f : In → F that are max-degree-k } and Pi(n, k) = {f : In → F that has
degree ≤ k in xi}. Observe that P (n, k) =

⋂k
i=1 Pi(n, k).

Definition 13.4. Define d(f, P (n, k)) = Prx∈RIn [f(x) 6= g(x)], and d(f, S) = ming∈S d(f, g).

Lemma 13.1. In a single round of the aligned line test, Pr[test rejects | i is chosen] ≥ d(f, Pi(n, k)).

Proof. For each choice of u1, . . . , ui−1, ui+1, . . . , un, there is a unique degree k polynomial
hu1,...,ui−1,ui+1,...,un(z) that equals f(u1, . . . , ui−1, z, ui+1, . . . , un) for z = a1, . . . , ak+1. The probability
that the test does not reject in step (3) is the probability that for ui ∈R I , f(u1, . . . , ui−1, ui, ui+1, . . . , un) =
hu1,...,ui−1,ui+1,...,un(ui). Combining all these hu1,...,ui−1,ui+1,...,un functions for different values of
u1, . . . , ui−1, ui+1, . . . , un this yields a function h ∈ Pi(n, k) and the probability that the test does not
reject is the probability that on a random −→u = (u1, . . . , un) ∈ In, f(−→u ) = h(−→u ) and this is precisely
1− d(f, h) ≤ 1− d(f, Pi(n, k)).

The correctness of the test is based on the lemma above and the following analysis.

Lemma 13.2. For any function f : In → F and any k,

d(f, P (n, k)) ≤ 6(k + 1)
n∑

i=1

d(f, Pi(n, k)) + 2nk/
√
|I|.

We first see how this implies that the aligned line test successfully detects functions that are far from
max-degree k.

Corollary 13.3. If d(f, P (n, k)) ≥ δ ≥ 4nk/
√
|I| then running the aligned test for t = Θ(nk/δ) rounds

will ensure that the test rejects with arbitrarily high constant probability. The total number of queries is
Θ(nk2/δ) and the total number of random bits is Θ( n

2k
δ log |I|).
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Proof. By Lemma 13.1,

Pr[test rejects in a round] ≥ 1

n

n∑

i=1

d(f, Pi(n, k))

n

≥
d(f, P (n, k)) − 2nk√

|I|
6(k + 1)n

≥
δ − 2nk√

|I|
6(k + 1)n

≥ δ

12(k + 1)n
,

by the assumption on δ. Thus the expected number of rounds before the test rejects is at most 12(k+1)n/δ.
Repeating this t = Ω(kn/δ) rounds yields arbitrarily high constant probability of detection. The aligned
line test makes k + 1 queries per round and uses n log2 |I| random bits per round.

Proof of Theorem 12.4. This Corollary is enough to complete the proof that PCP(poly, poly) = NEXP.
Using δ = 1/10, say, and using a field F with I ⊆ F and |I| ≥ 160n2 (since k = 1 in the application),
running the aligned line test for O(n) rounds (which yields O(n) queries and O(n2 log n) random bits is
sufficient to ensure that with probability ≥ 9/10, A is within Hamming distance δ of some multilinear Â.
Using the proof table for a coNP ⊆ IP (oracle) protocol with error at most 1/10 to verify that A satisfies B,
yields total failure probability at most 1/10 + 1/10 + 3δ = 1/2.

We now sketch some of the ideas involved in the proof of Lemma 13.2. The main idea behind all the
low degree tests we will use is the following generalization to multivariate polynomials of the fact that a low
degree polynomial only has a small number of roots.

Lemma 13.4 (Schwartz, Zippel). If p ∈ F[x1, . . . , xn] is a polynomial of total degree ≤ d, and p 6= 0, then
for a1, . . . , an ∈R I ⊆ F, Pr[p(a1, . . . , an) = 0] ≤ d

|I|

Proof. By induction on n. The base case n = 1 follows because the polynomial p has ≤ d roots.

For the induction step, write

p(x1, . . . , xn) =

m∑

i=0

pi(x1, . . . , xn−1)x
i
n.

Since the total degree of p is at most d, the total degree of pi is at most d− i.

Pr[p(a1, . . . , an) = 0] ≤ Pr[pm(a1, . . . , an−1) = 0] + Pr[p(a1, . . . , an) = 0] | pm(a1, . . . , an−1) 6= 0]

≤ d−m
|I| +

m

|I| =
d

|I|

where the bound for the first term follows from the inductive hypothesis applied to pm and the
bound for the second term follows from the application of the base case to the polynomial q(xn) =∑m

i=0 pi(a1, . . . , an−1)x
i
n.

Corollary 13.5. If |I| > 3nk and d(f, P (n, k)) ≤ 1/3 then there is a unique g such that d(f, g) =
d(f, P (n, k))
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Proof. Let g ∈ P (n, k) be a polynomial witnessing the fact that d(f, P (n, k)) < 1/3 so d(f, g) < 1/3.
Suppose h ∈ P (n, k) and h 6= g. The total degree of each of g and h is at most nk. Applying the
Schwartz-Zippel Lemma to g − h we see that d(g, h) ≥ 1 − nk

|I| >
2
3 . Since by the triangle inequality

d(g, h) ≤ d(f, g) + d(f, h) ≤ 1/3 + d(f, h), we obtain that d(f, h) > d(g, h) − 1/3 > 2/3 − 1/3 = 1/3
implying that g is unique.

Let f i ∈ Pi(n, k) be such that d(f, f i) = d(f, Pi(n, k)). Observe that by definition, d(f i, g) =
1
|I|

∑
c∈I d(f

i|xi=c, g|xi=c) and that if g ∈ P (n, k) then g|xi=c ∈ P (n − 1, k) for any c. In particular this

means that d(f i, g) ≥ 1
|I|

∑
c∈I d(f

i|xi=c, P (n− 1, k)).

The following is an immediate consequence of Corollary 13.5.

Lemma 13.6. If |I| > 3nk and f i ∈ Pi(n, k) and g ∈ P (n, k) agree on at least 2/3 of all i-lines then
d(f i, g) = d(f, P (n, k)) and for all c ∈ I , d(f i|xi=c, g|xi=c) = d(f i|xi=c, P (n− 1, k)) and thus

d(f i, g) =
1

|I|
∑

c∈I
d(f i|xi=c, P (n− 1, k)).

For any k+1 hyperplanes xi = c1, . . . , xi = ck+1, the fraction of all i-lines on which f i and g disagree
is at most

∑k+1
j=1 d(f

i
xi=cj , g) since f and g are in complete agreement on any i-line on which f i and g agree

on all of these hyperplanes. (This follows because f i and g are both degree k polynomials along any i-line;
see Figure 13.3.) For the same reason, on any i-line on which f i and g disagree, they agree on at most k
points.

k+
1 hyp

erplanes

Figure 13.3: Behavior on i-lines related to k + 1-hyperplanes

Moreover, even if there are k+1 hyperplanes xi = c1, . . . , xi = ck+1 on which
∑k+1

j=1 d(f
i
xi=cj , P (n−

1, k)) ≤ 1/3 then letting g1, . . . , gk+1 ∈ P (n − 1, k) be the witnessing polynomials close to f ixi=cj then

we can interpolate the gj to a single polynomial g′ ∈ P (n, k) for which f i and g′ agree on a fraction
1−α ≥ 2/3 of all i-lines, d(f i, g′) = d(f i, P (n, k)) ≤ α, and d(f ixi=c, P (n− 1, k)) = d(f ixi=c, g

′
xi=c) for

all c ∈ I . Again, on the α fraction of i-lines on which f i and g′ do not completely agree, there are at most k
points of agreement, so in total there are at most an αk/|I| ≤ k/(3|I|) fraction of all points in I n that could
contribute to places where d(f ixi=c, P (n − 1, k)) < α. By an averaging argument we obtain the following
lemma.

Lemma 13.7. For |I| > 3nk for any µ > 0, either
(a) Prc∈RI [d(f

i|xi=c, P (n− 1, k)) ≤ 1/(3k + 3)] ≤ k+1
|I| or

(b) Prc∈RI [d(f
i|xi=c, P (n− 1, k)) ≤ d(f i, P (n, k)) − µ] ≤ k

3µ|I| .
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The final argument follows, for suitable µ, using induction by iteratively choosing ci ∈R I and setting
each xi = ci for i = 1, . . . , n. We begin by observing that d(f, P (n, k)) ≤ d(f, f 1) + d(f1, P (n, k))
and expanding d(f 1, P (n, k)). Intuitively, at each step, either (a) holds and except for a k+1

|I| fraction of

choices so far, the average distance between f i and a max-degree k polynomial on the remaining choices is
at least 1/(3k + 3) ≥ d(f, P (n, k))/(3k + 3), or (b) holds and except for a k

3µ|I| fraction of choices so far,

the distance between f i and a max-degree k polynomial is well represented by its error on the remaining
choices (except for an additive error of at most µ). Furthermore, the distance at each choice ci is at most the
sum of the error based on setting one more variable in f i, d(f i, f i+1), and the distance between f i+1 and a
max-degree k polynomial in the remaining variables. Since after all values are set, the function defined on a
single input can be exactly represented by a max-degree k polynomial if (b) always holds then

d(f1, P (n, k)) ≤ nµ+
n−1∑

i=1

d(f i, f i+1) + n
k

3µ|I| ≤ nµ+
n−1∑

i=1

(d(f, f i) + d(f, f i+1)) + n
k

3µ|I|

and thus

d(f, P (n, k)) ≤ 2

n∑

i=1

d(f, f i) + nµ+
nk

3µ|I|

= 2

n∑

i=1

d(f, Pi(n, k)) + nµ+
nk

3µ|I| .

However, if (a) holds at some stage, consider the last stage j in which (a) holds. Except for a (k + 1)/|I|
fraction of inputs, d(f, P (n, k))/(3k + 3) is a lower bound on the distance between f j and a max-degree k
polynomial on the remaining inputs, and thus

d(f, P (n, k))/(3k + 3) ≤ (n− j)µ+
n−1∑

i=j

(d(f, f i) + d(f, f i+1)) + (n− j) k

3µ|I| +
k + 1

|I|

= 2

n∑

i=j

d(f, Pi(n, k)) + (n− j)µ+
(n− j)k

3µ|I| +
k + 1

|I| .

Strictly speaking, the stages at which (a) holds depend on the choices of the ci so this argument is not fully
rigorous as stated; however, it can be made rigorous by maintaining the sequence of choices made explicitly
and summing appropriately. The bounds in Lemma 13.2 follow.
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PCP and NP
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Notes: TerriMoore

Last time we finished the proof of Babai, Fortnow, and Lund’s theorem that PCP(poly, poly) = NEXP.
The following is an almost immediate corollary based on scaling down the parameters in the proof to NP

instead of NEXP.

Corollary 14.1. NP ⊆ PCP(polylog, polylog).

We will prove the following somewhat stronger theorem of Babai, Fortnow, Levin, and Szegedy that
yields polynomial-size proofs and a theorem by Feige, Goldwasser, Lovasz, Safra, and Szegedy that does
not yield polynomial-size proofs but has much better parameters.

Theorem 14.2 (Babai-Fortnow-Levin-Szegedy). NP ⊆ PCP(polylog, polylog); moreover the proof table
for the PCP(polylog, polylog) algorithm is of polynomial size.

Theorem 14.3 (Feige-Goldwasser-Lovasz-Safra-Szegedy). NP ⊆ PCP(log n log log n, log n log log n).

We will go through one proof that will yield both theorems. Before doing so, we will prove a connection
between PCPs for NP and MAX-CLIQUE.

Definition 14.1. For an undirected graph G, MAX-CLIQUE(G) (also known as ω(G)) is the size of
the largest clique in G. An function f is a factor α approximation algorithm for MAX-CLIQUE iff
MAX-CLIQUE(G)/α ≤ f(G) ≤ MAX-CLIQUE(G).

Theorem 14.4 (Feige-Goldwasser-Lovasz-Safra-Szegedy). If NP ⊆ PCP(r(n), q(n)) and there is
a polynomial time algorithm approximating MAX-CLIQUE better than a factor of 2 then NP ⊆
DTIME(2O(r(n)+q(n))).

Proof. Let L ∈ NP and V ?
L be a polytime verifier in a PCP(r(n), q(n)) protocal for L.

A transcript of V ?
L can be described by a random string r ∈ {0, 1}r′(n) where r′(n) is O(r(n)) and

the pairs (qi, ai) of queries and answers from the oracle for i = 1, . . . , q ′(n), where q′(n) is O(q(n)), and
ai ∈ {0, 1}.

On input x, transcript t is accepting if and only if V ?
L(x, r) given oracle answers (q1, a1), . . . , (q|x|, a|x|)

accepts. Two transcripts t = (r, q, a), t′ = (r′, q′, a′) are consistent if and only if ∀i, j if qi = qj then
ai = a′j .

There are 2r
′(n)+q′(n) total transcripts on an input x with |x| = n since the queries qi are determined by

the random string and the previous ai’s. Define a graph Gx with

V (Gx) = { accepting transcripts of V ?
L on input x}.
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In Gx, t, t′ ∈ V (Gx) are connected by an edge if and only if t, t′ are consistent accepting transcripts. Since
V ?
L is polynomial time, we can verify whether a transcript is in V (Gx) and check any edge of E(Gx) in

polynomial time. (Note: There is no need to write out the qi part in creating the graph since the qi can be
determined as above.)

Observe that a clique inGx corresponds precisely to all accepting computations based on a single oracle.
In one direction, if an oracle is fixed then all accepting computations given that oracle will have consistent
transcripts. In the other direction, for a clique in Gx, any oracle query yields the same answer on all the
transcripts in the clique and therefore we can extend those answers consistently to a single oracle for which
the transcripts in the clique correspond to accepting computations on that oracle.

Therefore
max

Π
Pr[V Π

L (x, r) accepts ] = MAX-CLIQUE(Gx)/2
r′(n).

(As a sanity check, notice that there are at most 2r
′(n) mutually consistent transcripts; otherwise there would

be two consistent transcripts with the same random strings and different query answers and these must be
inconsistent with each other.)

Therefore by the PCP definition, if x ∈ L then Gx has a clique of size 2r
′(n) but if x /∈ L then Gx has

a clique of size at most 2r
′(n)/2. The algorithm for L simply runs the approximation algorithm on input Gx

and accepts if the answer is larger than 2r
′(n)/2. The running time is polynomial is the size of Gx which is

2O(r(n)+q(n)).

Proof of Theorems 14.2 and 14.3. The proof will follow similar lines to that of Babai, Fortnow, and Lund.
Given a 3-CNF formula ϕ we can express ϕ implicitly as a formula in fewer variables just like we did using
the B formula. The following table summarizes the similarities and represents the scaled down parameters.

Before [BFL] Now
2n vars indexed by n bits n vars indexed by log n bits
2m clauses indexed by m bits ≤ 8n3 3-clauses indexed by ` = 3 log n+ 3 bits
A : {0, 1}n → {0, 1} a : {0, 1}log n → {0, 1}
|F| polynomial in n |F| polylog in n

In order to understand things better we will now express the proof table explicitly and use the sum-check
protocol for the verification because it is more explicit. Let i1, i2, i3 ∈ {1, . . . , n} be indices of clauses. (We
use i instead of v to emphasize their size.) We can view the 3-CNF formula ϕ as a map ϕ̂ : {0, 1}` → {0, 1}
saying which of the 8n3 possible clauses appear in ϕ. That is,

ϕ̂(i1, i2, i3, s1, s2, s3) = 1 ⇐⇒ the clause denoted (xi1 = s1) ∨ (xi2 = s2) ∨ (xi3 = s3) is in ϕ.

ϕ is satisfiable iff there is an assignment a : {0, 1}log n → {0, 1} such that

∀(i1, i2, i3, s1, s2, s3) ∈ {0, 1}`(ϕ̂(i1, i2, i3, s1, s2, s3) = 0 or a(i1) = s1, a(i2) = s2, or a(i3) = s3).

Let ā and ϕ̄ be multilinear extensions of a and ϕ̂. Then

ϕ is satisfiable ⇐⇒ ∀(i1, i2, i3, s1, s2, s3) ∈ {0, 1}` ϕ̄(i1, i2, i3, s1, s2, s3)·(ā(i1)−s1)·(ā(i2)−s2)·(ā(i3)−s3) = 0.

In polynomial time the verifier can easily produce ϕ̄ on its own. The verifier will run a multilinearity test on
ā as before. Let y = (i1, i2, i3, s1, s2, s3) and for any function a let

CC(y, a) = ϕ̄(y) · (a(i1)− s1) · (a(i2)− s2) · (a(i3)− s3)
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be the correctness check for clause y and assignment a. Thus ϕ is satisfiable if and only if ∀y ∈
{0, 1}` CC(y, ā) = 0. Observe that the verifier can efficient produce the polynomial for CC and since
ϕ̄ is multilinear, if ā is multilinear then CC(y, ā) has degree at most 2 in each variable and total degree at
most 4.

We cannot probe all 2` possible choices y. Instead for each assignment ā we can think of the possible
values of CC(y, ā) as a vector of length 2` which we want to be the vector 02`

. The idea is to use a linear
error-correcting code (that maps 02`

to a zero vector) and any non-zero vector to a vector that has a constant
fraction of non-zero entries so we will be able to detect whether or not the original vector was 02`

with
reasonable probability. The code we use here is a Reed-Muller code but many other codes would also work.

Choose ` random elements R = (r1, r2, . . . , r`) ∈R I` where I ⊆ F and define

ER(a) =
∑

y∈{0,1}`

CC(y, a)
∏

i s.t. yi=1

ri.

For a fixed a and varying R, E(a) = E(a, r1, . . . , r`) is a multilinear polynomial in r1, r2, . . . , r` with
coefficients CC(y, a). Moreover, E(a) is the zero polynomial if and only if ∀y ∈ {0, 1}` CC(y, a) = 0.
By the Schwartz-Zippel Lemma applied to E(a), PrR[ER(a) = 0] ≤ `

|I| .

To check that ϕ is satisfiable, the verifier chooses a random R and checks that ER(ā) = 0 using the
following protocol.

Sum-Check interactive protocal of Lund-Fortnow-Karloff-Nisan: Given a multivariable polynomial
p of max degree k verify

∑
y∈{0,1}` p(y) = c0 (where in our case, c0 = 0, k = 2, and p(y) =

CC(y, ā)
∏
i s.t. yi=1 ri).

Define g1(z) =
∑

y2,...,y`∈{0,1} p(z, y2, . . . , y`).

The prover sends the coefficients of a degree k polynomial f1 claimed to be g1. The verifier checks that
f1(0) + f1(1) = c0, chooses random r′1 ∈R I ⊆ F, sends r′1 to prover, and sets c1 = f1(r

′
1).

At the next round, g2(z) =
∑

y3,...,y`∈{0,1} p(r
′
1, z, y2, . . . , y`), the prover sends the coefficients of f2,

the check is that f2(0) + f2(1) = c1 and so forth.

At the end, the verifier directly checks that the value of p(r ′1, r
′
2, . . . , r

′
`) = c`.

In the case of applying the sum-check protocol for checking that

ER(ā) =
∑

y∈{0,1}`

CC(y, ā)
∏

i s.t. yi=1

ri = 0,

the values of r1, . . . , r` are known to the verifier. Once the values of y1, . . . , y` have been substituted by
r′1, . . . , r

′
`, the structure of CC(y, a) ensures that ā will only need to be queried in the three random places

specified by r′1, . . . , r
′
`−3. Thus the final check of the verifier can be done by the verifier with three queries

to the purported multilinear extension ā of a.

Proof Table: The above protocol is described interactively. However, the proof yields the following entries
in the proof table. For each r′1, r

′
2, . . . , r

′
i−1 ∈ I , for 1 ≤ i ≤ ` the table contains coefficients of a degree

≤ k polynomial, gr′1,...,r′i−1
(z) =

∑
yi+1,...,y`

p(r′1, . . . , r
′
i−1, z, yi+1, . . . , y`).

The size of the proof table is O(|I|` ·k · log |I|) bits, where ` is Θ(log n) and |I| is logΘ(1)(n) and k = 2.
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Overall, the table will have |I|` such sum-check proofs, one for each choice of r ′1, . . . , r
′
`.

There are a few details to fix up, such as counting queries and random bits, but as we have described
the proof so far, the size of the table is still at least |I|Θ(`) = log nΘ(log n) = nΘ(log log n) which is not
polynomial.

We can modify the proof in the following way so that the space required is polynomial. Encode the
variable names in base h; so that rather than using {0, 1} ⊆ I ⊆ F, use H ⊆ I ⊆ F where |H| = h =
log n. In this way, one can reduce the number of field elements required to encode a variable or clause to
`′ = O(log n/ log log n). This will have the advantage that |I|` will only be polynomial but it will have the
drawback that instead of using multilinear extensions we will need to use extensions of maximum-degree
k = h− 1. For example, it will mean that in the sum-check protocol the test will be that

∑
y∈H` p(y) = c0

and thus instead of checking that fi(0) + fi(1) = ci−1 at each step, the verifier will need to check that∑
j∈H fi(j) = ci−1.

The rest of the analysis including the total number of queries and random bits is sketched in the next
lecture.



Lecture 15

The PCP Theorem

May 25, 2004
Lecturer: Paul Beame

Notes: Ashish Sabharwal

At the end of last class we had nearly finished the proof of the following two theorems.

Theorem 15.1 (Babai-Fortnow-Levin-Szegedy). NP ⊆ PCP(polylog, polylog); more precisely NP =
PCP(log n, log3 n).

Theorem 15.2 (Feige-Goldwasser-Lovasz-Safra-Szegedy). NP ⊆ PCP(log n log log n, log n log log n).

Proof. Proof continued To review, in the last lecture, we first described PCP proofs that involved con-
structing a multilinear extension ā of an assignment a and checking the arithmetized clauses CC(w, a)
for w ∈ {0, 1}3 log n+3 = {0, 1}` where each arithmetized clause had maximum degree 2 and total de-
gree at most 4. We wanted to check that all these evaluated to 0. So, we used a Reed-Muller code
that involved r1, r2, . . . , r` ∈R I ⊆ F and checked using the sum-check protocol that the polynomial
sum ER(ā) =

∑
w∈{0,1}` CC(w, a)

∏
i, wi=1 ri = 0. The sum-check protocol required a table of size

|I|` log |F|, the number of random bits used was 2` log |I| and the number of queries was ` log |F|. For the
sum-check protocol to have a small failure probability we needed that |I| is at least a constant factor larger
than (#vars) · (maxdegree) = 2`.

In order to apply this test we need to ensure that the table ā really is close to a multilinear func-
tion. To do this we used the aligned line test described in Lecture 13. From Corollary 13.3, for
|I| = O((#vars)2 · (maxdegree)2/δ2), the number of trials needed to show distance at most some small con-
stant δ was O((#vars) · (maxdegree)/δ) = O((#vars) · (maxdegree)). Each trial required O(maxdegree)
queries. The total number of queries is O((#vars)(maxdegree2). Plussing in the number of variables
` = Θ(log n) and the the maximum degree we test for which is 1 in the case of multilinearity we con-
clude that for |I| = Θ(log2 n), the total number of queries used in the multilinearity test is O(log n) each
of which is an element of F which will require O(log |F|) = O(log log n) bits. This is fine for what we
wanted.

However, by Corollary 13.3, each trial uses (#vars) log |I| random bits so the total number of random
bits used is Ω((#vars)2(maxdegree) log |I|), which is Ω(log2 n log log n). This was more than our target
of O(log n log log n) random bits. To fix this we can use pairwise independence in place of complete
independence between the trials. We previously discussed this idea, due to Chor and Goldreich, in theory
seminar in Winter Quarter.

Pairwise Independent Trials Suppose we have a test that uses r random bits per trial. Using pairwise
independent hash functions ha,b(x) = ax + b over F2r , we can do k′ trials by choosing a, b ∈R F2r and
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using ha,b(1), ha,b(2), . . . , ha,b(k′) for k′ < 2r as pairwise independent random strings. This uses only 2r
random bits overall. By Chebyshev’s inequality, with high probability, the number of successful trials is
close to the expected number when the trials are completely independent, for large enough k ′.

In our case, r = (#vars) log |I| random bits per trial are used and k ′ = c(#vars) · (maxdegree) trials
is still sufficient with the additional errors introduced through the Chebyshev inequality. Thus a total of
O(log n log log n) random bits suffice for the aligned line test of multilinearity. This is enough to yield the
theorem that NP ⊆ PCP(log n log log n, log n log log n).

In order to reduce the proof size to polynomial and the number of random bits to O(log n) toward the
end of the last lecture we replaced the two element set {0, 1} with set H with |H| = h = log n. We could
now encode n variables with log n/ log log n variables over the set {1, 2, . . . , h} by a simple change of
basis. However, by this change, the maximum degree k = 2 in the sum-check protocol goes up to O(log n)
since the assignment A is degree h− 1 and is no longer multilinear. Similarly, in the max-degree h− 1 test
of the assignment A, the (maxdegree)2 term which previously was constant now becomes significant and
thus the total number of queries q grows to O(log3 n) bits. The size of I also needs to grow to Θ(log4 n) to
compensate for the growth in the max degree. However, using the pairwise independent trials the number of
random bits from both the max-degree-k tests and the sum-check protocol are stillO((#vars) log |I|) random
bits which is now only O(log n) bits. Thus NP = PCP(log n, log3 n) follows.

15.1 The PCP Theorem

The rest of this lecture will be devoted to the proof and implications of the following result:

Theorem 15.3 (PCP Theorem). NP = PCP(log n, 1)

15.1.1 Implications on Hardness of Approximation

Before going into the proof of the PCP theorem, we give one example of what it implies for approximation
problems. Let MAX3SAT be the problem of finding an assignment to a given 3CNF formula F that maxi-
mizes the number of clauses of F satisfied. An approximation algorithm for MAX3SAT with approximation
factor γ finds an assignment that satisfies at least OPT/γ clauses, where OPT is the number of clauses
satisfied by an optimal assignment.

MAX3SAT is a complete problem in the class MAXSNP of NP optimization problems introduced by
Papadimitriou and Yannakakis. Each problem in this class has a constant factor polynomial time approx-
imation algorithm but it is not known whether or not these approximation factors can be made arbitrarily
close to 1. The following corollary of the PCP Theorem shows that this is unlikely in general.

Corollary 15.4. There exists an ε > 0 such that if there is a polytime (1+ ε)-approximation for MAX3SAT
then P = NP.

Proof. We will convert SAT into a ‘gap’ problem and show that if there is a good enough approximation to
MAX3SAT, then SAT can be solved in polynomial time. The PCP theorem yields a polynomial time verifier
V ?

SAT with the following behavior. Given a formula ψ and an assignment a, consider the polysize PCP proof
E(a) that a satisfies ψ. V ?

SAT looks at E(a), uses O(log n) random bits, and makes q = O(1) queries based
on those bits. If ψ ∈ SAT, then V ?

SAT accepts. If ψ 6∈ SAT, then VSAT accepts with probability at most 1/2.
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V ?
SAT has 2O(log n) = polynomial number of random choices. Create one test circuit for each such

choice r, Testr : {0, 1}q → {0, 1}. The inputs to each of these test circuits are (different) q = O(1) bits
of E(a). Convert each Testr into a circuit of size O(2q/q); this can be done because of Lupanov’s bound
on circuit size stated in Lecture 4. (A trivial bound of q2q is also sufficient since these are all constant size.)
Now convert each circuit into a 3CNF by adding extra variables. This is again of size O(2q/q). Call the
conjunction of all these 3CNF’s ψ′. As described above, ψ′ can be constructed from ψ in polynomial time.

If ψ ∈ SAT, then ψ′ ∈ SAT. If ψ 6∈ SAT, then for any assignment a, at least half the tests Testr
are not satisfied and thus have at least one unsatisfied clause in each, implying that a total of at least a
q/(2 · 2q) = Ω(q/2q) fraction of clauses of ψ′ are unsatisfied. Since q = O(1), this is a constant fraction
and we have a gap problem for CNF satisfiability. If MAX3SAT can be approximated within a constant
factor, then this gap problem can be solved exactly, proving the Corollary.

15.1.2 Outline of the PCP Theorem Proof

As shown in Lecture 12, it will be sufficient to prove that NP ⊆ PCP(log n, 1) because any proof on the right
hand side can be trivially converted into an NP proof by enumerating the underlying tests for all possible
2O(log n) = nO(1) random choices of the PCP verifier.

Variants of the Low Degree Test

We used the aligned line test for max-degree k in the PCP constructions above. Even with an improved
analysis due to Arora and Safra, this test is not efficient enough for the PCP Theorem.

In the polynomial-size PCP construction above, the polynomials had max-degree k = log n. Their total
degree was not much larger, since the number of variables ` = log n/ log log n and thus their total degree
d = log2 n/ log log n. Let Ptot(`, d) be the set of all total degree d polynomials in ` variables.

In the improvements of the above PCP constructions that yield the PCP theorem, an efficient total-degree
test instead of an max-degree test is used. Since the original PCP Theorem there have been a number of total-
degree tests proposed and the original analysis has been improved. These tests all work for the construction
and provide different analysis complexity, exact PCP proof size and other parameter variations.

The original test, which is also easy to describe, is the Affine Line Test due to Arora, Lund, Motwani,
Sudan, and Szegedy.

The Affine Line Test: To test a function f : F`

A. Choose x, y ∈R F`

B. Query the d+ 1 coefficients of fx,y(t) where we are supposed to have fx,y(t) = f(x+ yt)

C. Check that fx,y(t) = f(x+ yt) holds at a random point t ∈R F.

Note that (x + yt) for different t’s are uniformly spaced points along a line of slope y with x as the
starting point. We state the following theorem without proof.

Theorem 15.5. The affine line test has the following properties:

A. If f has total degree at most d, then the test always accepts.
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B. There is some δ0 > 0 such that if the test accepts with probability at least 1− δ for some δ < δ0, then
f is within a 2δ fraction of a total degree d polynomial, i.e. , d(f, Ptot(`, d)) ≤ 2δ.

Note that this theorem is much more efficient both in number of queries and random bits than the aligned
line test. We now give a sketch of rest of the proof of the PCP theorem. Many of the details will be omitted
for lack of time.

15.1.3 Three New Ideas

There are three additional key ideas that are used in the proof of the PCP theorem.

Self-correction. The original protocol in the last lecture examined ā in only three random places. In general
the proof will need a more flexible way to access the truth assignment ā or other polynomials in the
proof.

Suppose we know that d(ā, Ptotal(`, d)) ≤ δ. Let â be the closest point in Ptotal(n, d). We would like
to evaluate â instead of ā.

Claim 3. We can evaluate â at an arbitrary place and be correct with probability at least 1− (d+1)δ.

Proof idea. To evaluate â(y), choose a random y and compute ā(x+y), ā(x+2y), . . . , ā(x+(d+1)y).
Compute degree d polynomial p(i) = ā(x + iy) by interpolation. Evaluate â(x) = p(0). The
randomness used here is in selecting y ∈R F`. The number of random bits needed is therefore the
same as before. The number of queries is d+ 1.

A Completely Different PCP.

Lemma 15.6 (Arora-Lund-Motwani-Sudan-Szegedy). NP ⊆ PCP(n2, 1)

We will describe the main ideas behind this result in the next section.

Composition. [Arora-Safra] We know NP = PCP(log n,polylog n). Start with such a PCP verifier V .
Given a PCP proof, V uses O(log n) random bits and checks logc n places of the proof, for some
constant c ≥ 0. Here is where the idea of composition comes in – instead of checking all n ′ = logc n
bits of the proof, view this test as an NP-style check on n′ bits. This NP-style test itself can be replaced
by an “inner” PCP verifier with parameters (n′2, 1) using the completely different PCP above. The
new PCP proof now contains the original “outer verifier” of type PCP(log n,polylog n) and for each
test on n′ bits, an “inner verifier” of type PCP(n′2, 1) that makes sure the test is satisfied. In fact, we
will need to apply composition more than once.

For this composition to make sense, we also need to add a “consistency check” to make sure all
assignments in the inner verifiers are consistent with a single outer verifier table. This part of the
construction is quite hairy and uses very specific properties of the proof tables themselves. We will
skip the details.

15.1.4 Outline of the Proof

Assume for now that all three of these new ideas work out. We get

NP ⊆ PCP(log n︸︷︷︸
outer

+ log2c n︸ ︷︷ ︸
inner

, 1)

= PCP(polylog n, 1)
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Now do a composition again with this new verifier as the inner verifier. We get

NP ⊆ PCP(log n︸︷︷︸
outer

+ poly(log log n)︸ ︷︷ ︸
inner

, 1)

= PCP(log n, 1)

15.1.5 Idea Behind NP ⊆ PCP(n2
, 1)

Let QUADRATIC-SAT be the following problem: given a family of polynomial equations of total degree at
most 2 over F2, are they simultaneously satisfiable?

Theorem 15.7. QUADRATIC-SAT is NP-complete.

Proof idea. One can simulate CIRCUIT-SAT using this problem. The general idea is to use the quadratic
equations to define the gates variables in the same way that such variables are used in conversion of
CIRCUIT-SAT into 3SAT. For instance, an AND gate with inputs yi and yj , and output yk translates into
the total degree 2 equation yk = yi · yj over F2.

We will prove that QUADRATIC-SAT is in PCP(n2, 1). Suppose we have an assignment a and polyno-
mials P1, P2, . . . , Pm of total degree at most 2. The PCP verifier will work as follows.

A. Choose r1, r2, . . . , rm ∈ F2.

B. Check assignment a on the total degree at most 2 polynomial P ≡ r1P1 + r2P2 + . . .+ rmPm, i.e. ,
test whether P (a) = 0.

By our standard argument, if there is some i such that Pi(a) 6= 0 then the probability that P (a) = 0 is 1/2.

The verifier will know the coefficients of P but they depend on the random choices of the ri that are not
know in advance so the proof table will need to give values for all possible quadratic polynomials. The proof
table that the verifier will access to do this calculation corresponds to expressing a total degree 2 polynomial
as:

P = b0 +

n∑

i=1

biyi +

n∑

i,j=1

cijyiyj

The PCP proof will include a table of
∑n

i=1 biai for all possible b ∈ Fn2 as well as a table of
∑n

i,j=1 cijaiaj
for all possible c ∈ Fn2 . The former of these is the well-known Hadamard code from coding theory, while
the latter is what is called the Quadratic code.

To check that this is correct, the verifier needs to do the following three things:

Check linearity of the tables in b and c, resp. Let f(b) denote the result of querying the first table on b.
To check linearity, the verifier checks f(b⊕b′) = f(b)⊕f(b′) for b, b′ ∈R Fn2 . This requires 3 queries
and we state without proof that if the check succeeds with probability at least 1− δ then the function
differs from a linear function in at most a δ fraction of entries. Linearity of the second table in c is
verified similarly.

Self-correction. Because the specific query b needed for P might be at a place where the table is incorrect,
so to compute f(b), choose a b′ ∈R Fn2 and instead compute f(b)← f(b⊕ b′)⊕ f(b′).
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Consistency check between the two tables. Although the individual b and c tables may be individually
linear there might be no relationship between them. For any y ∈ Fn and b, b′ ∈R Fn2 observe that
(
∑

i biyi)(
∑

j b
′
jyj) =

∑
i,j bib

′
jyiyj . Thus for consistency we need that cij = bib

′
j . In particular

we need to check that that (
∑

i biai)(
∑

j b
′
jaj) =

∑
i,j bib

′
jaiaj . The first two summations can be

evaluated directly from the first table, while the last summation can be evaluated using the second
table with cij = bib

′
j . Using self-correction for each of the three summation evaluations, this takes 6

queries.

The verifier uses O(n2) random bits overall to perform these checks and makes only a constant number
of queries. This proves that NP ⊆ PCP(n2, 1).
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In the few years after the definitions of NP-completeness, there was some hope that techniques such
as diagonalization from recursive function theory would be able to resaolve the question. However, those
hopes were dashed in the late 1970’s by the following construction.

Theorem 16.1 (Baker-Gill-Solovay). There exists oracles A, B such that

PA = NPA,PB 6= NPB

Since diagonal arguments generally work even when the machines involved are given access to oracles,
this theorem suggests that diagonalization cannot help in deciding if P = NP or P 6= NP.

Throughout the 1970’s, there was also more focus by Cook and others on approaching the P versus NP

question via the following containments of complexity classes

L ⊆ NL ⊆ P ⊆ NP.

This led to the use of more restrictive log-space reductions instead of polynomial-time reductions and to
look at which problems could be solved in both polynomial time and polylogarithmic space with a view to
separating classes such as L from NP. This led to the naming of the following classes of languages which
eventually came to be named after Steve Cook.

Definition 16.1.

SCk = TIMESPACE(nO(1), logk n)

SC = ∪kSCk [”Steve’s Class” after Steve Cook].

Open Problem 16.1. Is SC = P? Is NL ⊆ SC?

In the late 1970’s in part because of the proved weakness of diagonalization above, the study of
non-uniform complexity in general and circuits in particular rose to prominence. In particular, both for
complexity-theoretic reasons and for understanding the power of parallel computation, the following com-
plexity class analogues of SC were suggested.

Definition 16.2.

NCk = SIZEDEPTH(nO(1), O(logk n))

NC = ∪kNCk [”Nick’s Class” after Nick Pippenger].
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If each gate has a constant time delay, problems solvable in NC can be solved in polylog time us-
ing a polynomial amount of hardware. Both to understanding how one would actually build such par-
allel machines it is natural to define uniform versions of the NC circuit classes, which express how
easy it is to build the n-th circuit. There are many variants of such uniform complexity classes:

polytime uniform : there is a TM that on input 1n outputs the nth circuit in time no(1)

log-space uniform : there is a TM that on input 1n outputs the nth circuit using space O(logn)
or, equivalently, there is a TM that given a triple (u, v, op) of gate names u and v
and an operation op determines whether or not u is an input to v and gate v is
labeled by op and operates in linear space in the size of its input.

FO uniform : the language (u, v, op) as above can be recognized by a first-order logic formula.

Theorem 16.2. The following containment holds

log-space uniform NC1 ⊆ L ⊆ NL ⊆ NC2

Proof sketch. log-space uniform NC1 ⊆ L: An NC1 circuit has O(log n) depth. A log-space machine can
evaluate the circuit by doing a depth-first traversal using stack height at most O(log n) and accessing the
gates as needed using the log-space constructibility of the circuit as needed. in log-space and, the circuit can
be evaluated.

(NL ⊆ NC2) We show that directed graph reachability can be computed in NC2. Graph reachability
can be computed by using ∧ − ∨ matrix powering to compute transitive closure. This can be computed
efficiently using repeated squaring.

A→ A2 → A4 → · · · → A2log n
= An

where A is the adjacency matrix. Each matrix squaring can be performed in O(log n) depth and polyno-
mial size since there is a simple O(log n) depth fan-in circuit computing

∨n
k=1(aik ∧ akj). Thus, graph

reachability can be performed in O(log2 n) depth and polynomial size.

Open Problem 16.2. Is NP 6⊆ NC1? Even more specifically it is consistent with our current knowledge that
NP ⊆ SIZEDEPTH(O(n), O(log n))!

Additional Circuit Complexity Classes in NC

Definition 16.3. Define AC−SIZEDEPTH(S(n), d(n)) to be the circuit complexity class with appropriate
size and depth bounds that allows unbounded fan-in ∨ and ∧ gates in addition to binary fan-in ∨ and ∧
gates. [The AC stands for “alternating class” or “alternating circuits”.]
Define ACk = AC−SIZEDEPTH(nO(1), O(logk n)).

Analogously, we define AC[p]−SIZEDEPTH(S(n), d(n)) and ACk[p] where one also allows unbounded
fan-in ⊕p gates, where

⊕p(x1, · · · xn)
{

0 if
∑
xi ≡ 0 (mod p)

1 if
∑
xi 6≡ 0 (mod p).

and ACC−SIZEDEPTH(S(n), d(n)) and ACCk where where unbounded fan-in ⊕p gates for any values of
p are allowed. [ ACC stands for “alternating circuits with counters”.

Finally, define threshold circuits TC−SIZEDEPTH(S(n), d(n)) and TCk to allow threshold gates T nm,
where

T nm(x1, · · · xn) =

{
1 if

∑
xi ≥ m

0 otherwise.
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These circuits are important since TC0 corresponds to bounded-depth neural networks.

Lemma 16.3. Following containments hold

NC0 ⊆ AC0 ⊆ AC0[p] ⊆ ACC0 ⊆ TC0 ⊆ NC1

Proof. All of the containments follow easily from definitions. For example ACC0 ⊆ TC0 because count can
be implemented by threshold gates.

Additionally, there is the following non-trivial containment:

Lemma 16.4. NC1 ⊆ AC−SIZEDEPTH(nO(1), O(log n/ log log n)).

Proof. Break the NC1 circuit into O(log n/ log log n) layers of depth m = log log n each. Eac gate at the
boundaries between the layers can be expressed as a binary fan-in circuit with at most 2m inputs from the
boundary gates of the previous layer. Any function on M = 2m inputs can be expressed as a (depth-2) DNF
formula of size M2M = 2m22m

= O(n log n) so we can replace the circuitry between each layer by the
appropriate unbounded fan-in circuitry from these DNFs, retaining polynomial size but reducing depth by a
factor of 1

2 log log n.

The following are the two main theorems we will prove over the next lecture and a half. As stated, the
latter theorem is stronger than the former but the proof techniques for the former yield sharper bounds and
are interesting and useful in their own right.

Theorem 16.5 (Furst-Saxe-Sipser, Ajtai). Parity, ⊕2, is not in AC0.

Theorem 16.6 (Razborov, Smolensky). Let p 6= q be primes. Then ⊕p 6∈ AC0[q].

Corollary 16.7. ⊕p 6∈ AC0[q] where q is a prime power and p contains a prime factor not in q.

For the rest of this lecture we give the proof of Theorem 16.5.

Intuition: For an unbounded fan-in ∨ gate, setting any bit to 1 fixes the output. In an unbounded fan-in
∧ gate, setting any bit to 0 fixes the output. However, for a parity gate, all the inputs need to be fixed to
determine the output. Therefore, set bits to simplify the AC0 circuit (and eventually fix its value) while
leaving some bits unset which ensure that the circuit cannot compute parity.

Definition 16.4. Define a restriction to be a function ρ : {1, · · · n} → {0, 1, ∗}, where

ρ(i) =





0 means that variable xi is set to 0,

1 means that variable xi is set to 1, and

∗ means that variable xi is not set.

Let ∗(ρ) = ρ−1(∗) denote the set of variables unset by ρ.
Define f |ρ or C|ρ as the simplification of the function or circuit that results from applying the restriction ρ.

Definition 16.5. DefineRp to be a probability distribution on the set of restrictions such that for each i, the
probabilities of ρ(i) being *, 0 and 1 are p, 1−p

2 and 1−p
2 respectively and are independent for each i.

Lemma 16.8 (Hastad’s Switching Lemma). Let 0 ≤ p ≤ 1 and let F be an s-DNF formula, i.e., having
terms of length at most s. For ρ ∈R Rp,

Pr[F |ρ cannot be expressed as a t-CNF] < (5ps)t.
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The proof of this lemma is too long to present here but some useful intuition is in order. Suppose we
examine the terms of F , one by one. Any clause that is not set to by ρ leaves an s-DNF remaining without
that clause, which is a problem of essentially the same type as before. Given that the term is not set to 0
then every variable in the term is either unset or set according to its sign in the term. Given this, it has only a
roughly 2p chance that it is unset versus set according to the term. Therefore the expected number of unset
variables in any term is at most 2ps and it is very unlikely that more than one will be found in any term. Of
course the above argument ignores all sorts of probability conditioning which yields the extra .

Corollary 16.9. Let f : {0, 1}n → {0, 1} be in AC−SIZEDEPTH(S, d). Then, there exists ρ such that
| ∗ (ρ)| ≥ n/(10d(log S + 1)d−1) and f |ρ can be expressed as a (log S + 1)-DNF or CNF.

Proof. Without loss of generality assume that all negations are at leaves and ∨ and ∧ alternate.

The general idea is to apply the Hastad switching lemma to the subcircuits of the circuit computing f
that are nearest the inputs (usually called the bottom level of the circuit). At the bottom level, the functions
at the ∨ (resp. ∧) gates are switched to ∧ (reps. ∨) gates and merged with the level above.

In general, in applying the Hastad switching lemma, the argument will maintain s = t = log S + 1 and
set p = 1

10(log S+1) = 1
10s . In this case

(5ps)t = 2−t = 2− log S−1 =
1

2S
.

At the start of the argument however, the bottom level ∧ or ∨ gates correspond to 1-DNF or 1-CNFs so one
begins with s = 1 and t = log S+1. In this first step p = 1

10 is good enough to yield a 1
2S failure probability

at most.

Let i = 1. For each gate g at the bottom level, the probability that g doesn’t simplify under ρi ∈R Rp is
less than 1

2S . There are at most S such gates; so, the probability that there is some gate that doesn’t simplify
is less than 1/2.

Note that | ∗ (ρi)| is a binomially distributed random variable with mean E[| ∗ (ρi)|] = pn. Because
when p(1 − p)n → ∞ the binomial distribution behaves in the limit like a normal distribution a constant
fraction of its weight is above the mean, so we have Pr[| ∗ (ρi)| ≥ pn] ≥ 1/3.
Therefore Pr[ρi has | ∗ (ρi)| ≥ pn and circuit depth shrinks by 1] ≥ 1/6. Hence, by probabilistic method
there exists a ρi that has these properties. Fix it and repeat for i + 1, reducing depth every time. This gives
us a combined restriction ρ which is the composition of all the ρi and has the desired properties.

Theorem 16.10. Any AC circuit computing parity in size S and depth d has S ≥ 2
1
10
n1/(d−1) − 1.

Proof. To compute parity, we need

∗(ρ) ≤ log S + 1

⇒ n

10d(log S + 1)d−1
≤ log S + 1

⇒ n ≤ 10d(log S + 1)d

⇒ S + 1 ≥ 2
1
10
n1/d

To obtain a stronger result, observe that the subcircuits of depth d − 1 that are combined to produce the
parity function also require terms/clauses of size equal to the number of unset variables. Therefore we can
apply the above argument to the depth d− 1 subcircuits of the parity circuit and replace d by d− 1.
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Note that for the size to be polynomial this requires depth d = Ω(log n/ log log n).

The above argument is essentially tight since parity can be computed by AC circuits of depth d and size
2O(n1/(d−1)).
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In this lecture we will give bounds on circuit size-depths which compute the function ⊕p. More specifi-
cally we will show that a polynomial-sized constant depth AC 0[q] circuit cannot compute ⊕p.

Theorem 17.1 (Razborov,Smolensky). Let p 6= q be primes. Then ⊕p 6∈ AC0[q].

We will prove that S = 2n
Ω(1/d)

or d = Ω(log n/ log log S). Note that AC0[q] contains the operations

∧, ∨, ¬ and ⊕q where ⊕q(x1, . . . , xn) =

{
0 if

∑
i xi ≡ 0 (mod q)

1 otherwise.

To prove this theorem we will use the method of approximation introduced by Razborov.

Method of Approximation For each gate g in the circuit we will define a family Ag of allowable ap-
proximators for g. For the operation Opg at gate g, we define an approximate version Õpg such that if

g = Opg(h1, · · · , hk) then g̃ = Õpq(h̃1, · · · , h̃k) ∈ Ag.

We will prove that there are approximators such that Õp(h̃1, · · · , h̃k) and Op(h̃1, · · · , h̃k) differ on only
an ε-fraction of all inputs implying that the output f̃ ∈ Af differs from f on at most εS fraction of all inputs.
We will then prove that any function in Af differs from f on a large fraction of inputs proving that S is large
given d.

Proof of Theorem 17.1. We will prove that ⊕2 6∈ AC0[q] where q is a prime greater than 2. The proof can
be extended to replace ⊕2 by any ⊕p with p 6= q.

The Approximators For a gate g of height d′ in the circuit, the set of approximators Ag will be polyno-

mials over Fq. of total degree ≤ n d′

2d .

Gate approximators

• ¬ gates: If g = ¬h, define g̃ = 1− h̃. This yields no increase in error or degree.

• ⊕q gates: If g = ⊕q(h1, . . . , hk), define g̃ = (
∑k

i=1 h̃i)
q−1. Since q is a prime, by Fermat’s little

theorem we see that there is no error in the output. However, the degree increases by a factor of q− 1.

• ∨ gate:
Note that without loss of generality we can assume that other gates are ∨ gates: We can replace the
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∧ gates by ¬ and ∨ gates and since the ¬ gates do not cause any error or increase in degree we can
“ignore” them.
Suppose that g =

∨k
i=1 hi. Choose r̄1, · · · , r̄t ∈R {0, 1}k . Let h̃ = (h̃1, · · · , h̃k). Then

Pr[r̄1 · h̃ ≡ 0 (mod q)] =

{
1 if

∨
i = 1kh̃i = 0, and

≤ 1/2 otherwise.

(This follows because if
∨k
i=1 h̃i = 1 then there exists j such that h̃j 6= 0 in which case if we fix the

remaining coordinates of r̄1, there is at most one choice for the j th coordinate of r̄1 such that r̄1 ·h̃ ≡ 0
(mod q).)

Let g̃j = (r̄j · h̃)q−1 and define

g̃ = g̃1 ∨ · · · ∨ g̃t = 1−
t∏

j=1

(1− g̃j).

For each fixed vector of inputs h̃,

Pr[ g̃ 6=
k∨

i=1

h̃i ] ≤ (1/2)t.

Therefore, there exists r̄1, · · · , r̄t such that g̃ and
∨k
i=1 h̃i differ on at most a (1/2)t fraction of inputs.

Also note that the increase in degree from the ĥi to ĝ is (q − 1)t. We will choose t = n
1
2d /(q − 1).

Thus we obtain the following lemma:

Lemma 17.2. Let q ≥ 2 be prime. Every AC[q] circuit of size S and depth d has a degree ((q − 1)t)d

polynomial approximator over Fq with fractional error at most 2−tS.

In particular, setting t = n1/(2d)

q−1 , there is a degree
√
n approximator for the output of the circuit having

error ≤ 2−
n1/(2d)

q−1 S.

In contrast we have the following property of approximators for ⊕2.

Lemma 17.3. For q > 2 prime and n ≥ 100, any
√
n degree polynomial approximator for ⊕2 over Fq has

error at least 1/5.

Proof. Let U = {0, 1}n be the set of all inputs. Let G ⊆ U be the set of “good” inputs, those on which a
degree

√
n polynomial a agrees with ⊕2.

Instead of viewing ⊕2 as {0, 1}n → {0, 1} we consider ⊕′
2 : {−1, 1}n → {−1, 1} where we interpret

−1 as representing 1 and 1 as representing 0. In particular, ⊕′
2(y1, · · · , yn) =

∏
i yi. where yi = (−1)xi .

We get that ⊕2(x1, · · · , xn) = 1 if and only if ⊕′
2(y1, · · · , yn) = −1.

We can see that the xi → yi map can be expressed using a linear map m as follows
m(xi) = 2xi − 1 and since q is odd, m has an inverse map m−1(yi) = (yi + 1)/2

Thus, given a of
√
n-degree polynomial that approximates ⊕2, we can get an approximator a′ of

√
n

degree that approximates ⊕′
2 by defining

a′(y1, · · · , yn) = m(a(m−1(y1), · · · ,m−1(yn))).
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It is easy to see that a′ and ⊕′
2 agree on the image m(G) of G.

Let FG be the set of all functions f : m(G)→ Fq. It is immediate that

|FG| = q|G|. (17.1)

Given any f ∈ FG we can extend f to a polynomial pf : {1,−1}n → Fq such that f and pf agree
everywhere on m(G). Since y2

i = 1, we see that pf is multilinear. We will convert pf to a (n +
√
n)/2-

degree polynomial.

Each monomial
∏
i∈T yi of pf is converted as follows:

• if |T | ≤ (n+
√
n)/2, leave the monomial unchanged.

• if |T | > (n +
√
n)/2, replace

∏
i∈T yi by a′

∏
i∈T̄ yi where T̄ = {1, . . . , n} − T . Since y2

i = 1 we
have that

∏
i∈T yi

∏
i∈T ′ yi =

∏
i∈T∆T ′ yi. Since on m(G), a′(y1, . . . , yn) =

∏n
i=1 yi, we get that∏

i∈T yi = a′
∏
i∈T̄ yi onm(G). The degree of the new polynomial is |T̄ |+√n ≤ (n−√n)/2+

√
n =

(n+
√
n)/2.

Thus |FG| is at most the number of polynomials over Fq of degree ≤ (n +
√
n)/2. Since each such

polynomial has a coefficient over Fq for each monomial of degree at most (n+
√
n)/2,

|FG| ≤ qM (17.2)

where

M =

(n+
√
n)/2∑

i=0

(ni ) ≤
4

5
2n (17.3)

for n ≥ 100. This latter bound follows from the fact that this sum consists of the binomial coefficients up to
one standard deviation above the mean. In the limit as n→∞ this would approach the normal distribution
and consist of roughly 68% of all weight. By n around 100 this yields at most 80% of all weight.

From equations 17.1,17.2 and 17.3 we get |G| ≤ |M | ≤ 4
52n. Hence the error ≥ 1/5.

Corollary 17.4. For q > 2 prime, any AC0[q] circuit of size S and depth d computing ⊕2 requires S ≥
1
52

n
1
2d

q−1

Proof. Follows from Lemmas 17.2 and 17.3.

This yields the proof of Theorem 17.1.

From Corollary 17.4, we can see that for polynomial-size AC[q] circuits computing ⊕2, the depth d =
Ω( log n

log log n). By the lemma from the last lecture that NC1 ⊆ AC−SIZEDEPTH(nO(1), O( log n
log log n)) any

asymptotically larger depth lower bound for any function would be prove that it is not in NC1.

Our inability to extend the results above to the case that q is not a prime is made evident by the fact that
following absurd possibility cannot be ruled out.

Open Problem 17.1. Is NP ⊆ AC0[6] ?

The strongest kind of separation result we know for any of the NC classes is the following result which
only holds for the uniform version of ACC0. It uses diagonalization.

Theorem 17.5 (Allender-Gore). PERM 6∈ UniformACC0.


