
Lecture 15

The PCP Theorem

May 25, 2004
Lecturer: Paul Beame

Notes: Ashish Sabharwal

At the end of last class we had nearly finished the proof of the following two theorems.

Theorem 15.1 (Babai-Fortnow-Levin-Szegedy). NP ⊆ PCP(polylog, polylog); more precisely NP =
PCP(log n, log3 n).

Theorem 15.2 (Feige-Goldwasser-Lovasz-Safra-Szegedy). NP ⊆ PCP(log n log log n, log n log log n).

Proof. Proof continued To review, in the last lecture, we first described PCP proofs that involved con-
structing a multilinear extension ā of an assignment a and checking the arithmetized clauses CC(w, a)
for w ∈ {0, 1}3 log n+3 = {0, 1}` where each arithmetized clause had maximum degree 2 and total de-
gree at most 4. We wanted to check that all these evaluated to 0. So, we used a Reed-Muller code
that involved r1, r2, . . . , r` ∈R I ⊆ F and checked using the sum-check protocol that the polynomial
sum ER(ā) =

∑

w∈{0,1}` CC(w, a)
∏

i, wi=1 ri = 0. The sum-check protocol required a table of size

|I|` log |F|, the number of random bits used was 2` log |I| and the number of queries was ` log |F|. For the
sum-check protocol to have a small failure probability we needed that |I| is at least a constant factor larger
than (#vars) · (maxdegree) = 2`.

In order to apply this test we need to ensure that the table ā really is close to a multilinear func-
tion. To do this we used the aligned line test described in Lecture 13. From Corollary 13.3, for
|I| = O((#vars)2 · (maxdegree)2/δ2), the number of trials needed to show distance at most some small con-
stant δ was O((#vars) · (maxdegree)/δ) = O((#vars) · (maxdegree)). Each trial required O(maxdegree)
queries. The total number of queries is O((#vars)(maxdegree2). Plussing in the number of variables
` = Θ(log n) and the the maximum degree we test for which is 1 in the case of multilinearity we con-
clude that for |I| = Θ(log2 n), the total number of queries used in the multilinearity test is O(log n) each
of which is an element of F which will require O(log |F|) = O(log log n) bits. This is fine for what we
wanted.

However, by Corollary 13.3, each trial uses (#vars) log |I| random bits so the total number of random
bits used is Ω((#vars)2(maxdegree) log |I|), which is Ω(log2 n log log n). This was more than our target
of O(log n log log n) random bits. To fix this we can use pairwise independence in place of complete
independence between the trials. We previously discussed this idea, due to Chor and Goldreich, in theory
seminar in Winter Quarter.

Pairwise Independent Trials Suppose we have a test that uses r random bits per trial. Using pairwise
independent hash functions ha,b(x) = ax + b over F2r , we can do k′ trials by choosing a, b ∈R F2r and

80

LECTURE 15. THE PCP THEOREM 81

using ha,b(1), ha,b(2), . . . , ha,b(k
′) for k′ < 2r as pairwise independent random strings. This uses only 2r

random bits overall. By Chebyshev’s inequality, with high probability, the number of successful trials is
close to the expected number when the trials are completely independent, for large enough k ′.

In our case, r = (#vars) log |I| random bits per trial are used and k ′ = c(#vars) · (maxdegree) trials
is still sufficient with the additional errors introduced through the Chebyshev inequality. Thus a total of
O(log n log log n) random bits suffice for the aligned line test of multilinearity. This is enough to yield the
theorem that NP ⊆ PCP(log n log log n, log n log log n).

In order to reduce the proof size to polynomial and the number of random bits to O(log n) toward the
end of the last lecture we replaced the two element set {0, 1} with set H with |H| = h = log n. We could
now encode n variables with log n/ log log n variables over the set {1, 2, . . . , h} by a simple change of
basis. However, by this change, the maximum degree k = 2 in the sum-check protocol goes up to O(log n)
since the assignment A is degree h− 1 and is no longer multilinear. Similarly, in the max-degree h− 1 test
of the assignment A, the (maxdegree)2 term which previously was constant now becomes significant and
thus the total number of queries q grows to O(log3 n) bits. The size of I also needs to grow to Θ(log4 n) to
compensate for the growth in the max degree. However, using the pairwise independent trials the number of
random bits from both the max-degree-k tests and the sum-check protocol are stillO((#vars) log |I|) random
bits which is now only O(log n) bits. Thus NP = PCP(log n, log3 n) follows.

15.1 The PCP Theorem

The rest of this lecture will be devoted to the proof and implications of the following result:

Theorem 15.3 (PCP Theorem). NP = PCP(log n, 1)

15.1.1 Implications on Hardness of Approximation

Before going into the proof of the PCP theorem, we give one example of what it implies for approximation
problems. Let MAX3SAT be the problem of finding an assignment to a given 3CNF formula F that maxi-
mizes the number of clauses of F satisfied. An approximation algorithm for MAX3SAT with approximation
factor γ finds an assignment that satisfies at least OPT/γ clauses, where OPT is the number of clauses
satisfied by an optimal assignment.

MAX3SAT is a complete problem in the class MAXSNP of NP optimization problems introduced by
Papadimitriou and Yannakakis. Each problem in this class has a constant factor polynomial time approx-
imation algorithm but it is not known whether or not these approximation factors can be made arbitrarily
close to 1. The following corollary of the PCP Theorem shows that this is unlikely in general.

Corollary 15.4. There exists an ε > 0 such that if there is a polytime (1+ ε)-approximation for MAX3SAT
then P = NP.

Proof. We will convert SAT into a ‘gap’ problem and show that if there is a good enough approximation to
MAX3SAT, then SAT can be solved in polynomial time. The PCP theorem yields a polynomial time verifier
V ?

SAT with the following behavior. Given a formula ψ and an assignment a, consider the polysize PCP proof
E(a) that a satisfies ψ. V ?

SAT looks at E(a), uses O(log n) random bits, and makes q = O(1) queries based
on those bits. If ψ ∈ SAT, then V ?

SAT accepts. If ψ 6∈ SAT, then VSAT accepts with probability at most 1/2.

LECTURE 15. THE PCP THEOREM 82

V ?
SAT has 2O(log n) = polynomial number of random choices. Create one test circuit for each such

choice r, Testr : {0, 1}q → {0, 1}. The inputs to each of these test circuits are (different) q = O(1) bits
of E(a). Convert each Testr into a circuit of size O(2q/q); this can be done because of Lupanov’s bound
on circuit size stated in Lecture 4. (A trivial bound of q2q is also sufficient since these are all constant size.)
Now convert each circuit into a 3CNF by adding extra variables. This is again of size O(2q/q). Call the
conjunction of all these 3CNF’s ψ′. As described above, ψ′ can be constructed from ψ in polynomial time.

If ψ ∈ SAT, then ψ′ ∈ SAT. If ψ 6∈ SAT, then for any assignment a, at least half the tests Testr
are not satisfied and thus have at least one unsatisfied clause in each, implying that a total of at least a
q/(2 · 2q) = Ω(q/2q) fraction of clauses of ψ′ are unsatisfied. Since q = O(1), this is a constant fraction
and we have a gap problem for CNF satisfiability. If MAX3SAT can be approximated within a constant
factor, then this gap problem can be solved exactly, proving the Corollary.

15.1.2 Outline of the PCP Theorem Proof

As shown in Lecture 12, it will be sufficient to prove that NP ⊆ PCP(log n, 1) because any proof on the right
hand side can be trivially converted into an NP proof by enumerating the underlying tests for all possible
2O(log n) = nO(1) random choices of the PCP verifier.

Variants of the Low Degree Test

We used the aligned line test for max-degree k in the PCP constructions above. Even with an improved
analysis due to Arora and Safra, this test is not efficient enough for the PCP Theorem.

In the polynomial-size PCP construction above, the polynomials had max-degree k = log n. Their total
degree was not much larger, since the number of variables ` = log n/ log log n and thus their total degree
d = log2 n/ log log n. Let Ptot(`, d) be the set of all total degree d polynomials in ` variables.

In the improvements of the above PCP constructions that yield the PCP theorem, an efficient total-degree
test instead of an max-degree test is used. Since the original PCP Theorem there have been a number of total-
degree tests proposed and the original analysis has been improved. These tests all work for the construction
and provide different analysis complexity, exact PCP proof size and other parameter variations.

The original test, which is also easy to describe, is the Affine Line Test due to Arora, Lund, Motwani,
Sudan, and Szegedy.

The Affine Line Test: To test a function f : F
`

1. Choose x, y ∈R F
`

2. Query the d+ 1 coefficients of fx,y(t) where we are supposed to have fx,y(t) = f(x+ yt)

3. Check that fx,y(t) = f(x+ yt) holds at a random point t ∈R F.

Note that (x + yt) for different t’s are uniformly spaced points along a line of slope y with x as the
starting point. We state the following theorem without proof.

Theorem 15.5. The affine line test has the following properties:

1. If f has total degree at most d, then the test always accepts.

LECTURE 15. THE PCP THEOREM 83

2. There is some δ0 > 0 such that if the test accepts with probability at least 1− δ for some δ < δ0, then
f is within a 2δ fraction of a total degree d polynomial, i.e. , d(f, Ptot(`, d)) ≤ 2δ.

Note that this theorem is much more efficient both in number of queries and random bits than the aligned
line test. We now give a sketch of rest of the proof of the PCP theorem. Many of the details will be omitted
for lack of time.

15.1.3 Three New Ideas

There are three additional key ideas that are used in the proof of the PCP theorem.

Self-correction. The original protocol in the last lecture examined ā in only three random places. In general
the proof will need a more flexible way to access the truth assignment ā or other polynomials in the
proof.

Suppose we know that d(ā, Ptotal(`, d)) ≤ δ. Let â be the closest point in Ptotal(n, d). We would like
to evaluate â instead of ā.

Claim 3. We can evaluate â at an arbitrary place and be correct with probability at least 1− (d+1)δ.

Proof idea. To evaluate â(y), choose a random y and compute ā(x+y), ā(x+2y), . . . , ā(x+(d+1)y).
Compute degree d polynomial p(i) = ā(x + iy) by interpolation. Evaluate â(x) = p(0). The
randomness used here is in selecting y ∈R F

`. The number of random bits needed is therefore the
same as before. The number of queries is d+ 1.

A Completely Different PCP.

Lemma 15.6 (Arora-Lund-Motwani-Sudan-Szegedy). NP ⊆ PCP(n2, 1)

We will describe the main ideas behind this result in the next section.

Composition. [Arora-Safra] We know NP = PCP(log n,polylog n). Start with such a PCP verifier V .
Given a PCP proof, V uses O(log n) random bits and checks logc n places of the proof, for some
constant c ≥ 0. Here is where the idea of composition comes in – instead of checking all n ′ = logc n
bits of the proof, view this test as an NP-style check on n′ bits. This NP-style test itself can be replaced
by an “inner” PCP verifier with parameters (n′2, 1) using the completely different PCP above. The
new PCP proof now contains the original “outer verifier” of type PCP(log n,polylog n) and for each
test on n′ bits, an “inner verifier” of type PCP(n′2, 1) that makes sure the test is satisfied. In fact, we
will need to apply composition more than once.

For this composition to make sense, we also need to add a “consistency check” to make sure all
assignments in the inner verifiers are consistent with a single outer verifier table. This part of the
construction is quite hairy and uses very specific properties of the proof tables themselves. We will
skip the details.

15.1.4 Outline of the Proof

Assume for now that all three of these new ideas work out. We get

NP ⊆ PCP(log n
︸︷︷︸

outer

+ log2c n
︸ ︷︷ ︸

inner

, 1)

= PCP(polylog n, 1)

LECTURE 15. THE PCP THEOREM 84

Now do a composition again with this new verifier as the inner verifier. We get

NP ⊆ PCP(log n
︸︷︷︸

outer

+ poly(log log n)
︸ ︷︷ ︸

inner

, 1)

= PCP(log n, 1)

15.1.5 Idea Behind NP ⊆ PCP(n2
, 1)

Let QUADRATIC-SAT be the following problem: given a family of polynomial equations of total degree at
most 2 over F2, are they simultaneously satisfiable?

Theorem 15.7. QUADRATIC-SAT is NP-complete.

Proof idea. One can simulate CIRCUIT-SAT using this problem. The general idea is to use the quadratic
equations to define the gates variables in the same way that such variables are used in conversion of
CIRCUIT-SAT into 3SAT. For instance, an AND gate with inputs yi and yj , and output yk translates into
the total degree 2 equation yk = yi · yj over F2.

We will prove that QUADRATIC-SAT is in PCP(n2, 1). Suppose we have an assignment a and polyno-
mials P1, P2, . . . , Pm of total degree at most 2. The PCP verifier will work as follows.

1. Choose r1, r2, . . . , rm ∈ F2.

2. Check assignment a on the total degree at most 2 polynomial P ≡ r1P1 + r2P2 + . . .+ rmPm, i.e. ,
test whether P (a) = 0.

By our standard argument, if there is some i such that Pi(a) 6= 0 then the probability that P (a) = 0 is 1/2.

The verifier will know the coefficients of P but they depend on the random choices of the ri that are not
know in advance so the proof table will need to give values for all possible quadratic polynomials. The proof
table that the verifier will access to do this calculation corresponds to expressing a total degree 2 polynomial
as:

P = b0 +

n∑

i=1

biyi +

n∑

i,j=1

cijyiyj

The PCP proof will include a table of
∑n

i=1 biai for all possible b ∈ F
n
2 as well as a table of

∑n
i,j=1 cijaiaj

for all possible c ∈ F
n
2 . The former of these is the well-known Hadamard code from coding theory, while

the latter is what is called the Quadratic code.

To check that this is correct, the verifier needs to do the following three things:

Check linearity of the tables in b and c, resp. Let f(b) denote the result of querying the first table on b.
To check linearity, the verifier checks f(b⊕b′) = f(b)⊕f(b′) for b, b′ ∈R F

n
2 . This requires 3 queries

and we state without proof that if the check succeeds with probability at least 1− δ then the function
differs from a linear function in at most a δ fraction of entries. Linearity of the second table in c is
verified similarly.

Self-correction. Because the specific query b needed for P might be at a place where the table is incorrect,
so to compute f(b), choose a b′ ∈R F

n
2 and instead compute f(b)← f(b⊕ b′)⊕ f(b′).

LECTURE 15. THE PCP THEOREM 85

Consistency check between the two tables. Although the individual b and c tables may be individually
linear there might be no relationship between them. For any y ∈ F

n and b, b′ ∈R F
n
2 observe that

(
∑

i biyi)(
∑

j b
′
jyj) =

∑

i,j bib
′
jyiyj . Thus for consistency we need that cij = bib

′
j . In particular

we need to check that that (
∑

i biai)(
∑

j b
′
jaj) =

∑

i,j bib
′
jaiaj . The first two summations can be

evaluated directly from the first table, while the last summation can be evaluated using the second
table with cij = bib

′
j . Using self-correction for each of the three summation evaluations, this takes 6

queries.

The verifier uses O(n2) random bits overall to perform these checks and makes only a constant number
of queries. This proves that NP ⊆ PCP(n2, 1).

