Lecture 14

PCP and NP

May 20, 2004 Lecturer: Paul Beame Notes: 9100M irri9T

Last time we finished the proof of Babai, Fortnow, and Lund's theorem that PCP(poly, poly) = NEXP. The following is an almost immediate corollary based on scaling down the parameters in the proof to NP instead of NEXP.

Corollary 14.1. NP \subseteq PCP(polylog, polylog).

We will prove the following somewhat stronger theorem of Babai, Fortnow, Levin, and Szegedy that yields polynomial-size proofs and a theorem by Feige, Goldwasser, Lovasz, Safra, and Szegedy that does not yield polynomial-size proofs but has much better parameters.

Theorem 14.2 (Babai-Fortnow-Levin-Szegedy). NP \subseteq PCP(polylog, polylog); moreover the proof table for the PCP(polylog, polylog) algorithm is of polynomial size.

Theorem 14.3 (Feige-Goldwasser-Lovasz-Safra-Szegedy). NP \subseteq PCP(log *n* log log *n*, log *n* log log *n*).

We will go through one proof that will yield both theorems. Before doing so, we will prove a connection between PCPs for NP and MAX-CLIQUE.

Definition 14.1. For an undirected graph G, MAX-CLIQUE(G) (also known as $\omega(G)$) is the size of the largest clique in G. An function f is a factor α approximation algorithm for MAX-CLIQUE iff MAX-CLIQUE(G)/ $\alpha \leq f(G) \leq$ MAX-CLIQUE(G).

Theorem 14.4 (Feige-Goldwasser-Lovasz-Safra-Szegedy). If NP \subseteq PCP(r(n), q(n)) and there is a polynomial time algorithm approximating MAX-CLIQUE better than a factor of 2 then NP \subseteq DTIME $(2^{O(r(n)+q(n))})$.

Proof. Let $L \in \mathsf{NP}$ and $V_L^?$ be a polytime verifier in a $\mathsf{PCP}(r(n), q(n))$ protocal for L.

A transcript of $V_L^?$ can be described by a random string $r \in \{0,1\}^{r'(n)}$ where r'(n) is O(r(n)) and the pairs (q_i, a_i) of queries and answers from the oracle for $i = 1, \ldots, q'(n)$, where q'(n) is O(q(n)), and $a_i \in \{0,1\}$.

On input x, transcript t is accepting if and only if $V_L^2(x, r)$ given oracle answers $(q_1, a_1), \ldots, (q_{|x|}, a_{|x|})$ accepts. Two transcripts t = (r, q, a), t' = (r', q', a') are consistent if and only if $\forall i, j$ if $q_i = q_j$ then $a_i = a'_j$.

There are $2^{r'(n)+q'(n)}$ total transcripts on an input x with |x| = n since the queries q_i are determined by the random string and the previous a_i 's. Define a graph G_x with

 $V(G_x) = \{ \text{ accepting transcripts of } V_L^? \text{ on input } x \}.$

In $G_x, t, t' \in V(G_x)$ are connected by an edge if and only if t, t' are consistent accepting transcripts. Since $V_L^?$ is polynomial time, we can verify whether a transcript is in $V(G_x)$ and check any edge of $E(G_x)$ in polynomial time. (Note: There is no need to write out the q_i part in creating the graph since the q_i can be determined as above.)

Observe that a clique in G_x corresponds precisely to all accepting computations based on a single oracle. In one direction, if an oracle is fixed then all accepting computations given that oracle will have consistent transcripts. In the other direction, for a clique in G_x , any oracle query yields the same answer on all the transcripts in the clique and therefore we can extend those answers consistently to a single oracle for which the transcripts in the clique correspond to accepting computations on that oracle.

Therefore

$$\max_{\Pi} \Pr[V_L^{\Pi}(x, r) \text{ accepts }] = \text{MAX-CLIQUE}(G_x)/2^{r'(n)}$$

(As a sanity check, notice that there are at most $2^{r'(n)}$ mutually consistent transcripts; otherwise there would be two consistent transcripts with the same random strings and different query answers and these must be inconsistent with each other.)

Therefore by the PCP definition, if $x \in L$ then G_x has a clique of size $2^{r'(n)}$ but if $x \notin L$ then G_x has a clique of size at most $2^{r'(n)}/2$. The algorithm for L simply runs the approximation algorithm on input G_x and accepts if the answer is larger than $2^{r'(n)}/2$. The running time is polynomial is the size of G_x which is $2^{O(r(n)+q(n))}$.

Proof of Theorems 14.2 and 14.3. The proof will follow similar lines to that of Babai, Fortnow, and Lund. Given a 3-CNF formula φ we can express φ implicitly as a formula in fewer variables just like we did using the *B* formula. The following table summarizes the similarities and represents the scaled down parameters.

Before [BFL]	Now
2^n vars indexed by n bits	n vars indexed by $\log n$ bits
2^m clauses indexed by m bits	$\leq 8n^3$ 3-clauses indexed by $\ell = 3\log n + 3$ bits
$A: \{0,1\}^n \to \{0,1\}$	$a: \{0,1\}^{\log n} \to \{0,1\}$
$ \mathbb{F} $ polynomial in n	$ \mathbb{F} $ polylog in n

In order to understand things better we will now express the proof table explicitly and use the sum-check protocol for the verification because it is more explicit. Let $i_1, i_2, i_3 \in \{1, \ldots, n\}$ be indices of clauses. (We use *i* instead of *v* to emphasize their size.) We can view the 3-CNF formula φ as a map $\widehat{\varphi} : \{0, 1\}^{\ell} \to \{0, 1\}$ saying which of the $8n^3$ possible clauses appear in φ . That is,

$$\widehat{\varphi}(i_1, i_2, i_3, s_1, s_2, s_3) = 1 \iff \text{ the clause denoted } (x_{i_1} = s_1) \lor (x_{i_2} = s_2) \lor (x_{i_3} = s_3) \text{ is in } \varphi$$

 φ is satisfiable iff there is an assignment $a: \{0,1\}^{\log n} \to \{0,1\}$ such that

$$\forall (i_1, i_2, i_3, s_1, s_2, s_3) \in \{0, 1\}^{\ell} (\widehat{\varphi}(i_1, i_2, i_3, s_1, s_2, s_3) = 0 \text{ or } a(i_1) = s_1, \ a(i_2) = s_2, \text{ or } a(i_3) = s_3).$$

Let \bar{a} and $\bar{\varphi}$ be multilinear extensions of a and $\hat{\varphi}$. Then

$$\varphi \text{ is satisfiable } \iff \forall (i_1, i_2, i_3, s_1, s_2, s_3) \in \{0, 1\}^{\ell} \ \bar{\varphi}(i_1, i_2, i_3, s_1, s_2, s_3) \cdot (\bar{a}(i_1) - s_1) \cdot (\bar{a}(i_2) - s_2) \cdot (\bar{a}(i_3) - s_3) = 0.$$

In polynomial time the verifier can easily produce $\bar{\varphi}$ on its own. The verifier will run a multilinearity test on \bar{a} as before. Let $y = (i_1, i_2, i_3, s_1, s_2, s_3)$ and for any function a let

$$CC(y,a) = \bar{\varphi}(y) \cdot (a(i_1) - s_1) \cdot (a(i_2) - s_2) \cdot (a(i_3) - s_3)$$

be the correctness check for clause y and assignment a. Thus φ is satisfiable if and only if $\forall y \in \{0,1\}^{\ell} CC(y,\bar{a}) = 0$. Observe that the verifier can efficient produce the polynomial for CC and since $\bar{\varphi}$ is multilinear, if \bar{a} is multilinear then $CC(y,\bar{a})$ has degree at most 2 in each variable and total degree at most 4.

We cannot probe all 2^{ℓ} possible choices y. Instead for each assignment \bar{a} we can think of the possible values of $CC(y, \bar{a})$ as a vector of length 2^{ℓ} which we want to be the vector $0^{2^{\ell}}$. The idea is to use a linear error-correcting code (that maps $0^{2^{\ell}}$ to a zero vector) and any non-zero vector to a vector that has a constant fraction of non-zero entries so we will be able to detect whether or not the original vector was $0^{2^{\ell}}$ with reasonable probability. The code we use here is a Reed-Muller code but many other codes would also work.

Choose ℓ random elements $R = (r_1, r_2, \dots, r_\ell) \in_R I^\ell$ where $I \subseteq \mathbb{F}$ and define

$$E_R(a) = \sum_{y \in \{0,1\}^\ell} CC(y,a) \prod_{i \text{ s.t. } y_i = 1} r_i$$

For a fixed a and varying R, $E(a) = E(a, r_1, ..., r_\ell)$ is a multilinear polynomial in $r_1, r_2, ..., r_\ell$ with coefficients CC(y, a). Moreover, E(a) is the zero polynomial if and only if $\forall y \in \{0, 1\}^{\ell} CC(y, a) = 0$. By the Schwartz-Zippel Lemma applied to E(a), $\Pr_R[E_R(a) = 0] \leq \frac{\ell}{|U|}$.

To check that φ is satisfiable, the verifier chooses a random R and checks that $E_R(\bar{a}) = 0$ using the following protocol.

Sum-Check interactive protocal of Lund-Fortnow-Karloff-Nisan: Given a multivariable polynomial p of max degree k verify $\sum_{y \in \{0,1\}^{\ell}} p(y) = c_0$ (where in our case, $c_0 = 0, k = 2$, and $p(y) = CC(y, \bar{a}) \prod_{i \text{ s.t. } y_i=1} r_i$).

Define $g_1(z) = \sum_{y_2, \dots, y_\ell \in \{0,1\}} p(z, y_2, \dots, y_\ell).$

The prover sends the coefficients of a degree k polynomial f_1 claimed to be g_1 . The verifier checks that $f_1(0) + f_1(1) = c_0$, chooses random $r'_1 \in_R I \subseteq \mathbb{F}$, sends r'_1 to prover, and sets $c_1 = f_1(r'_1)$.

At the next round, $g_2(z) = \sum_{y_3,\dots,y_\ell \in \{0,1\}} p(r'_1, z, y_2, \dots, y_\ell)$, the prover sends the coefficients of f_2 , the check is that $f_2(0) + f_2(1) = c_1$ and so forth.

At the end, the verifier directly checks that the value of $p(r'_1, r'_2, \dots, r'_{\ell}) = c_{\ell}$.

In the case of applying the sum-check protocol for checking that

$$E_R(\bar{a}) = \sum_{y \in \{0,1\}^{\ell}} CC(y,\bar{a}) \prod_{i \text{ s.t. } y_i=1} r_i = 0,$$

the values of r_1, \ldots, r_ℓ are known to the verifier. Once the values of y_1, \ldots, y_ℓ have been substituted by r'_1, \ldots, r'_ℓ , the structure of CC(y, a) ensures that \bar{a} will only need to be queried in the three random places specified by $r'_1, \ldots, r'_{\ell-3}$. Thus the final check of the verifier can be done by the verifier with three queries to the purported multilinear extension \bar{a} of a.

Proof Table: The above protocol is described interactively. However, the proof yields the following entries in the proof table. For each $r'_1, r'_2, \ldots, r'_{i-1} \in I$, for $1 \le i \le \ell$ the table contains coefficients of a degree $\le k$ polynomial, $g_{r'_1,\ldots,r'_{i-1}}(z) = \sum_{y_{i+1},\ldots,y_\ell} p(r'_1,\ldots,r'_{i-1},z,y_{i+1},\ldots,y_\ell)$.

The size of the proof table is $O(|I|^{\ell} \cdot k \cdot \log |I|)$ bits, where ℓ is $\Theta(\log n)$ and |I| is $\log^{\Theta(1)}(n)$ and k = 2.

Overall, the table will have $|I|^\ell$ such sum-check proofs, one for each choice of r'_1, \ldots, r'_ℓ .

There are a few details to fix up, such as counting queries and random bits, but as we have described the proof so far, the size of the table is still at least $|I|^{\Theta(\ell)} = \log n^{\Theta(\log n)} = n^{\Theta(\log \log n)}$ which is not polynomial.

We can modify the proof in the following way so that the space required is polynomial. Encode the variable names in base h; so that rather than using $\{0,1\} \subseteq I \subseteq \mathbb{F}$, use $H \subseteq I \subseteq \mathbb{F}$ where $|H| = h = \log n$. In this way, one can reduce the number of field elements required to encode a variable or clause to $\ell' = O(\log n/\log \log n)$. This will have the advantage that $|I|^{\ell}$ will only be polynomial but it will have the drawback that instead of using multilinear extensions we will need to use extensions of maximum-degree k = h - 1. For example, it will mean that in the sum-check protocol the test will be that $\sum_{y \in H^{\ell}} p(y) = c_0$ and thus instead of checking that $f_i(0) + f_i(1) = c_{i-1}$ at each step, the verifier will need to check that $\sum_{i \in H} f_i(j) = c_{i-1}$.

The rest of the analysis including the total number of queries and random bits is sketched in the next lecture. $\hfill \Box$