
Lecture 14

PCP and NP

May 20, 2004
Lecturer: Paul Beame

Notes: TerriMoore

Last time we finished the proof of Babai, Fortnow, and Lund’s theorem that PCP(poly, poly) = NEXP.
The following is an almost immediate corollary based on scaling down the parameters in the proof to NP

instead of NEXP.

Corollary 14.1. NP ⊆ PCP(polylog, polylog).

We will prove the following somewhat stronger theorem of Babai, Fortnow, Levin, and Szegedy that
yields polynomial-size proofs and a theorem by Feige, Goldwasser, Lovasz, Safra, and Szegedy that does
not yield polynomial-size proofs but has much better parameters.

Theorem 14.2 (Babai-Fortnow-Levin-Szegedy). NP ⊆ PCP(polylog, polylog); moreover the proof table
for the PCP(polylog, polylog) algorithm is of polynomial size.

Theorem 14.3 (Feige-Goldwasser-Lovasz-Safra-Szegedy). NP ⊆ PCP(log n log log n, log n log log n).

We will go through one proof that will yield both theorems. Before doing so, we will prove a connection
between PCPs for NP and MAX-CLIQUE.

Definition 14.1. For an undirected graph G, MAX-CLIQUE(G) (also known as ω(G)) is the size of
the largest clique in G. An function f is a factor α approximation algorithm for MAX-CLIQUE iff
MAX-CLIQUE(G)/α ≤ f(G) ≤ MAX-CLIQUE(G).

Theorem 14.4 (Feige-Goldwasser-Lovasz-Safra-Szegedy). If NP ⊆ PCP(r(n), q(n)) and there is
a polynomial time algorithm approximating MAX-CLIQUE better than a factor of 2 then NP ⊆
DTIME(2O(r(n)+q(n))).

Proof. Let L ∈ NP and V ?
L be a polytime verifier in a PCP(r(n), q(n)) protocal for L.

A transcript of V ?
L can be described by a random string r ∈ {0, 1}r′(n) where r′(n) is O(r(n)) and

the pairs (qi, ai) of queries and answers from the oracle for i = 1, . . . , q ′(n), where q′(n) is O(q(n)), and
ai ∈ {0, 1}.

On input x, transcript t is accepting if and only if V ?
L(x, r) given oracle answers (q1, a1), . . . , (q|x|, a|x|)

accepts. Two transcripts t = (r, q, a), t′ = (r′, q′, a′) are consistent if and only if ∀i, j if qi = qj then
ai = a′j .

There are 2r′(n)+q′(n) total transcripts on an input x with |x| = n since the queries qi are determined by
the random string and the previous ai’s. Define a graph Gx with

V (Gx) = { accepting transcripts of V ?
L on input x}.

76

LECTURE 14. PCP AND NP 77

In Gx, t, t′ ∈ V (Gx) are connected by an edge if and only if t, t′ are consistent accepting transcripts. Since
V ?

L is polynomial time, we can verify whether a transcript is in V (Gx) and check any edge of E(Gx) in
polynomial time. (Note: There is no need to write out the qi part in creating the graph since the qi can be
determined as above.)

Observe that a clique in Gx corresponds precisely to all accepting computations based on a single oracle.
In one direction, if an oracle is fixed then all accepting computations given that oracle will have consistent
transcripts. In the other direction, for a clique in Gx, any oracle query yields the same answer on all the
transcripts in the clique and therefore we can extend those answers consistently to a single oracle for which
the transcripts in the clique correspond to accepting computations on that oracle.

Therefore
max

Π
Pr[V Π

L (x, r) accepts] = MAX-CLIQUE(Gx)/2r′(n).

(As a sanity check, notice that there are at most 2r′(n) mutually consistent transcripts; otherwise there would
be two consistent transcripts with the same random strings and different query answers and these must be
inconsistent with each other.)

Therefore by the PCP definition, if x ∈ L then Gx has a clique of size 2r′(n) but if x /∈ L then Gx has
a clique of size at most 2r′(n)/2. The algorithm for L simply runs the approximation algorithm on input Gx

and accepts if the answer is larger than 2r′(n)/2. The running time is polynomial is the size of Gx which is
2O(r(n)+q(n)).

Proof of Theorems 14.2 and 14.3. The proof will follow similar lines to that of Babai, Fortnow, and Lund.
Given a 3-CNF formula ϕ we can express ϕ implicitly as a formula in fewer variables just like we did using
the B formula. The following table summarizes the similarities and represents the scaled down parameters.

Before [BFL] Now
2n vars indexed by n bits n vars indexed by log n bits
2m clauses indexed by m bits ≤ 8n3 3-clauses indexed by ` = 3 log n + 3 bits
A : {0, 1}n → {0, 1} a : {0, 1}log n → {0, 1}
|F| polynomial in n |F| polylog in n

In order to understand things better we will now express the proof table explicitly and use the sum-check
protocol for the verification because it is more explicit. Let i1, i2, i3 ∈ {1, . . . , n} be indices of clauses. (We
use i instead of v to emphasize their size.) We can view the 3-CNF formula ϕ as a map ϕ̂ : {0, 1}` → {0, 1}
saying which of the 8n3 possible clauses appear in ϕ. That is,

ϕ̂(i1, i2, i3, s1, s2, s3) = 1 ⇐⇒ the clause denoted (xi1 = s1) ∨ (xi2 = s2) ∨ (xi3 = s3) is in ϕ.

ϕ is satisfiable iff there is an assignment a : {0, 1}log n → {0, 1} such that

∀(i1, i2, i3, s1, s2, s3) ∈ {0, 1}`(ϕ̂(i1, i2, i3, s1, s2, s3) = 0 or a(i1) = s1, a(i2) = s2, or a(i3) = s3).

Let ā and ϕ̄ be multilinear extensions of a and ϕ̂. Then

ϕ is satisfiable ⇐⇒ ∀(i1, i2, i3, s1, s2, s3) ∈ {0, 1}` ϕ̄(i1, i2, i3, s1, s2, s3)·(ā(i1)−s1)·(ā(i2)−s2)·(ā(i3)−s3) = 0.

In polynomial time the verifier can easily produce ϕ̄ on its own. The verifier will run a multilinearity test on
ā as before. Let y = (i1, i2, i3, s1, s2, s3) and for any function a let

CC(y, a) = ϕ̄(y) · (a(i1) − s1) · (a(i2) − s2) · (a(i3) − s3)

LECTURE 14. PCP AND NP 78

be the correctness check for clause y and assignment a. Thus ϕ is satisfiable if and only if ∀y ∈
{0, 1}` CC(y, ā) = 0. Observe that the verifier can efficient produce the polynomial for CC and since
ϕ̄ is multilinear, if ā is multilinear then CC(y, ā) has degree at most 2 in each variable and total degree at
most 4.

We cannot probe all 2` possible choices y. Instead for each assignment ā we can think of the possible
values of CC(y, ā) as a vector of length 2` which we want to be the vector 02`

. The idea is to use a linear
error-correcting code (that maps 02`

to a zero vector) and any non-zero vector to a vector that has a constant
fraction of non-zero entries so we will be able to detect whether or not the original vector was 02`

with
reasonable probability. The code we use here is a Reed-Muller code but many other codes would also work.

Choose ` random elements R = (r1, r2, . . . , r`) ∈R I` where I ⊆ F and define

ER(a) =
∑

y∈{0,1}`

CC(y, a)
∏

i s.t. yi=1

ri.

For a fixed a and varying R, E(a) = E(a, r1, . . . , r`) is a multilinear polynomial in r1, r2, . . . , r` with
coefficients CC(y, a). Moreover, E(a) is the zero polynomial if and only if ∀y ∈ {0, 1}` CC(y, a) = 0.
By the Schwartz-Zippel Lemma applied to E(a), PrR[ER(a) = 0] ≤ `

|I| .

To check that ϕ is satisfiable, the verifier chooses a random R and checks that ER(ā) = 0 using the
following protocol.

Sum-Check interactive protocal of Lund-Fortnow-Karloff-Nisan: Given a multivariable polynomial
p of max degree k verify

∑
y∈{0,1}` p(y) = c0 (where in our case, c0 = 0, k = 2, and p(y) =

CC(y, ā)
∏

i s.t. yi=1 ri).

Define g1(z) =
∑

y2,...,y`∈{0,1} p(z, y2, . . . , y`).

The prover sends the coefficients of a degree k polynomial f1 claimed to be g1. The verifier checks that
f1(0) + f1(1) = c0, chooses random r′1 ∈R I ⊆ F, sends r′1 to prover, and sets c1 = f1(r

′
1).

At the next round, g2(z) =
∑

y3,...,y`∈{0,1} p(r′1, z, y2, . . . , y`), the prover sends the coefficients of f2,
the check is that f2(0) + f2(1) = c1 and so forth.

At the end, the verifier directly checks that the value of p(r ′1, r
′
2, . . . , r

′
`) = c`.

In the case of applying the sum-check protocol for checking that

ER(ā) =
∑

y∈{0,1}`

CC(y, ā)
∏

i s.t. yi=1

ri = 0,

the values of r1, . . . , r` are known to the verifier. Once the values of y1, . . . , y` have been substituted by
r′1, . . . , r

′
`, the structure of CC(y, a) ensures that ā will only need to be queried in the three random places

specified by r′1, . . . , r
′
`−3. Thus the final check of the verifier can be done by the verifier with three queries

to the purported multilinear extension ā of a.

Proof Table: The above protocol is described interactively. However, the proof yields the following entries
in the proof table. For each r′1, r

′
2, . . . , r

′
i−1 ∈ I , for 1 ≤ i ≤ ` the table contains coefficients of a degree

≤ k polynomial, gr′
1
,...,r′

i−1
(z) =

∑
yi+1,...,y`

p(r′1, . . . , r
′
i−1, z, yi+1, . . . , y`).

The size of the proof table is O(|I|` ·k · log |I|) bits, where ` is Θ(log n) and |I| is logΘ(1)(n) and k = 2.

LECTURE 14. PCP AND NP 79

Overall, the table will have |I|` such sum-check proofs, one for each choice of r ′1, . . . , r
′
`.

There are a few details to fix up, such as counting queries and random bits, but as we have described
the proof so far, the size of the table is still at least |I|Θ(`) = log nΘ(log n) = nΘ(log log n) which is not
polynomial.

We can modify the proof in the following way so that the space required is polynomial. Encode the
variable names in base h; so that rather than using {0, 1} ⊆ I ⊆ F, use H ⊆ I ⊆ F where |H| = h =
log n. In this way, one can reduce the number of field elements required to encode a variable or clause to
`′ = O(log n/ log log n). This will have the advantage that |I|` will only be polynomial but it will have the
drawback that instead of using multilinear extensions we will need to use extensions of maximum-degree
k = h − 1. For example, it will mean that in the sum-check protocol the test will be that

∑
y∈H` p(y) = c0

and thus instead of checking that fi(0) + fi(1) = ci−1 at each step, the verifier will need to check that∑
j∈H fi(j) = ci−1.

The rest of the analysis including the total number of queries and random bits is sketched in the next
lecture.

