L ecture 14

PCP and NP

May 20, 2004
Lecturer: Paul Beame
Notes: s100M iTBT

Last time we finished the proof of Babai, Fortnow, and Lund’s theorem that PCP(poly, poly) = NEXP.
The following is an almost immediate corollary based on scaling down the parameters in the proof to NP
instead of NEXP.

Corollary 14.1. NP C PCP(polylog, polylog).
We will prove the following somewhat stronger theorem of Babai, Fortnow, Levin, and Szegedy that

yields polynomial-size proofs and a theorem by Feige, Goldwasser, Lovasz, Safra, and Szegedy that does
not yield polynomial-size proofs but has much better parameters.

Theorem 14.2 (Babai-Fortnow-Levin-Szegedy). NP C PCP(polylog, polylog); moreover the proof table
for the PCP(polylog, polylog) algorithmis of polynomial size.

Theorem 14.3 (Feige-Goldwasser-Lovasz-Safra-Szegedy). NP C PCP(log nloglogn,log nloglogn).
We will go through one proof that will yield both theorems. Before doing so, we will prove a connection
between PCPs for NP and MAX-CLIQUE.

Definition 14.1. For an undirected graph G, MAX-CLIQUE(G) (also known as w(G)) is the size of
the largest clique in G. An function f is a factor . approximation algorithm for MAX-CLIQUE iff
MAX-CLIQUE(G)/a < f(G) < MAX-CLIQUE(G).

Theorem 14.4 (Feige-Goldwasser-Lovasz-Safra-Szegedy). If NP C PCP(r(n),q(n)) and there is
a polynomial time algorithm approximating MAX-CLIQUE better than a factor of 2 then NP C
DTIME(20(r(m)+a(n)),

Proof. Let L € NP and V;/ be a polytime verifier in a PCP(r(n), g(n)) protocal for L.
A transcript of V;/ can be described by a random string » € {0,1}"' (™) where /(n) is O(r(n)) and

the pairs (g;, a;) of queries and answers from the oracle for i = 1,...,¢’(n), where ¢’(n) is O(g(n)), and
a; € {0, 1}.
On input z, transcript ¢ is accepting if and only if VL?(x, 7) given oracle answers (g1, a1), - -, (q|z|> A|z|)

accepts. Two transcripts ¢ = (r,q,a), t' = (1',q¢’,d’) are consistent if and only if Vi, j if ¢; = ¢; then
!/
a; = aj.

There are 27 (M+4'(") total transcripts on an input = with || = n since the queries ¢; are determined by
the random string and the previous a;’s. Define a graph G, with

V(G,) = { accepting transcripts of V/ on input z}.

76



LECTURE 14. PCPAND NP 77

In G, t,t' € V(G,) are connected by an edge if and only if ¢, ¢’ are consistent accepting transcripts. Since
VL? is polynomial time, we can verify whether a transcript is in V(G ) and check any edge of E(G,) in
polynomial time. (Note: There is no need to write out the g; part in creating the graph since the ¢; can be
determined as above.)

Observe that a clique in G, corresponds precisely to all accepting computations based on a single oracle.
In one direction, if an oracle is fixed then all accepting computations given that oracle will have consistent
transcripts. In the other direction, for a clique in G, any oracle query yields the same answer on all the
transcripts in the clique and therefore we can extend those answers consistently to a single oracle for which
the transcripts in the clique correspond to accepting computations on that oracle.

Therefore
max Pr[V}(z, r) accepts | = MAX-CLIQUE (G,)/2" ™.

(As a sanity check, notice that there are at most 2"’ (™) mutually consistent transcripts; otherwise there would
be two consistent transcripts with the same random strings and different query answers and these must be
inconsistent with each other.)

Therefore by the PCP definition, if 2 € L then G, has a clique of size 2" (") but if z ¢ L then G, has
a cligue of size at most 2’“’(")/2. The algorithm for L simply runs the approximation algorithm on input GG,

and accepts if the answer is larger than 27"'(")/2. The running time is polynomial is the size of G, which is
90(r(n)+q(n)) U

Proof of Theorems 14.2 and 14.3. The proof will follow similar lines to that of Babai, Fortnow, and Lund.
Given a 3-CNF formula ¢ we can express ¢ implicitly as a formula in fewer variables just like we did using
the B formula. The following table summarizes the similarities and represents the scaled down parameters.

Before [BFL] Now

2™ vars indexed by n bits n vars indexed by log n bits

2™ clauses indexed by m bits < 8n3 3-clauses indexed by ¢ = 31logn + 3 bits
A:{0,1}" — {0,1} a:{0,1}°e" — {0,1}

|F| polynomial in n |F| polylog in n

In order to understand things better we will now express the proof table explicitly and use the sum-check
protocol for the verification because it is more explicit. Letiq,is,i3 € {1,...,n} be indices of clauses. (\We
use 4 instead of v to emphasize their size.) We can view the 3-CNF formula p asamap @ : {0,1}* — {0,1}
saying which of the 8n3 possible clauses appear in . That is,

o(i1,142,13, 51, 52,53) = 1 <= the clause denoted (x;, = s1) V (zi, = s2) V (x5, = s3) iSin ¢.
o is satisfiable iff there is an assignment a : {0,1}°8™ — {0, 1} such that
V(iy, o, i3, 51,52, 53) € {0, 1Y(B(i1, 49, i3, 51, 52, 53) = 0 0r a(iy) = s1, a(iz) = s9, OF aliz) = s3).
Let @ and @ be multilinear extensions of @ and . Then
o is satisfiable <= V/(i1, 2,43, 51, 52,53) € {0, 1} @(i1, 49,13, 51, 59, 83)-(@(i1)—s1)-(a(iz)—s2)-(@(iz)—s3) = 0.

In polynomial time the verifier can easily produce ¢ on its own. The verifier will run a multilinearity test on
a as before. Let y = (iy,19, 13, 1, 2, s3) and for any function a let

CC(y,a) = ¢(y) - (a(ir) — s1) - (aliz) — s2) - (aliz) — s3)



LECTURE 14. PCPAND NP 78

be the correctness check for clause y and assignment a. Thus ¢ is satisfiable if and only if Vy €
{0,1}f CC(y,a) = 0. Observe that the verifier can efficient produce the polynomial for CC and since
@ is multilinear, if a is multilinear then C'C(y, a) has degree at most 2 in each variable and total degree at
most 4.

We cannot probe all 2¢ possible choices y. Instead for each assignment @ we can think of the possible
values of CC(y, a) as a vector of length 2¢ which we want to be the vector 0%". The idea is to use a linear
error-correcting code (that maps 02" to a zero vector) and any non-zero vector to a vector that has a constant
fraction of non-zero entries so we will be able to detect whether or not the original vector was 02" with
reasonable probability. The code we use here is a Reed-Muller code but many other codes would also work.

Choose ¢ random elements R = (ry,72,...,7¢) €R I* where I C T and define

Er(a) = Z CC(y,a) H Ti.

ye{0,1}* i St oy=1

For a fixed a and varying R, E(a) = E(a,r1,...,r¢) is a multilinear polynomial in 1,79, ..., 7, with
coefficients CC(y,a). Moreover, E(a) is the zero polynomial if and only if Vy € {0,1}¢ CC(y,a) = 0.
By the Schwartz-Zippel Lemma applied to E(a), Prg[Fr(a) = 0] < %

To check that ¢ is satisfiable, the verifier chooses a random R and checks that Er(a) = 0 using the
following protocol.

Sum-Check interactive protocal of Lund-Fortnow-Karloff-Nisan: Given a multivariable polynomial
p of max degree k verify Zye{al}( p(y) = co (where in our case, ¢ = 0,k = 2, and p(y) =

CC(?]? d) Hz S.t.oyi=1 Ti)'
Define g1 (Z) = Zyg,...,yKG{O,l} p(zv Yy2,... 7yf)'

The prover sends the coefficients of a degree &k polynomial f; claimed to be g;. The verifier checks that
f1(0) 4+ f1(1) = co, chooses random r} €r I C TF, sends | to prover, and sets ¢; = f1(r}).

At the next round, g2(z) = Ey&___’yée{oﬂ}p(ri, Z,92,...,Ye), the prover sends the coefficients of f,
the check is that f2(0) + f2(1) = ¢1 and so forth.

At the end, the verifier directly checks that the value of p(r{,75,...,7}) = cs.

In the case of applying the sum-check protocol for checking that

Eg(@) = Y CCa) [[ m=0

ye{0,1}¢ i S.Loy=1
the values of rq,...,r, are known to the verifier. Once the values of y1,...,y, have been substituted by
...,y the structure of CC(y,a) ensures that a will only need to be queried in the three random places
specified by 7/, ..., r;_5. Thus the final check of the verifier can be done by the verifier with three queries

to the purported multilinear extension a of a.

Proof Table: The above protocol is described interactively. However, the proof yields the following entries
in the proof table. For each r},75,...,r,_, € I, for 1 <1 < ¢ the table contains coefficients of a degree

< kpolynomial, g« ., (2) =3, o POl T2 Y1, Ye)

The size of the proof table is O(|I|* - k-log ||) bits, where ¢ is © (log n) and |I| is log® ™) (n) and k = 2.



LECTURE 14. PCPAND NP 79

Overall, the table will have |I|* such sum-check proofs, one for each choice of r{, ..., 7).

There are a few details to fix up, such as counting queries and random bits, but as we have described
the proof so far, the size of the table is still at least [I|9() = logn®Uosn) — ,OUoeglogn) which is not
polynomial.

We can modify the proof in the following way so that the space required is polynomial. Encode the
variable names in base h; so that rather than using {0,1} C I C F,use H C I C F where |H| = h =
logn. In this way, one can reduce the number of field elements required to encode a variable or clause to
¢ = O(log n/loglog n). This will have the advantage that |I|* will only be polynomial but it will have the
drawback that instead of using multilinear extensions we will need to use extensions of maximum-degree
k = h — 1. For example, it will mean that in the sum-check protocol the test will be that Zyem p(y) = co
and thus instead of checking that f;(0) + fi(1) = c¢;—1 at each step, the verifier will need to check that

> jen fild) = cim1.
The rest of the analysis including the total number of queries and random bits is sketched in the next
lecture. O



