
Lecture 12

Probablistically Checkable Proofs

May 13, 2004
Lecturer: Paul Beame

Notes: Chris Re

12.1 Probablisitically Checkable Proofs Overview

We know that IP = PSPACE. This means there is an interactive protocol between a prover P and a verifier
V such that

Ψ ∈ TQBF → (P, V) accepts Ψ with probability 1

Ψ /∈ TQBF → (P, V) accepts Ψ with Probability ≤
1

2
.

Suppose that we wanted to express the entire strategy of the prover in this protocol for all possible
interactions with a verifier. This strategy would consist of a rooted tree of the possible interactions, where
each node of the tree corresponds to the state of the system between rounds of communication and the edges
are labelled by the values sent during the rounds. At each round, the verifier sends a polynomial number
of random bits (in the size N of the input Ψ) so each node just before a verifier move has fan-out 2NO(1)

.
Each node just before a prover move has fan-out 1 which lists the prover’s (best) response to the previous
communcation. The entire tree has depth N O(1). Because of the depth and fan-out of the tree, it has 2NO(1)

nodes overall.

Thus, the IP protocol corresponds to a table of size 2NO(1)
of which the protocol accesses/queries only

NO(1) bits determined by the choice of NO(1) random bits. PCP is a generalization of these proof techniques
along the two mentioned axes: the number of random bits and the number of queries allowed.

12.2 PCP definition

Think of a proof as a large table and the verification has access to only a small number of places in the table.
This is the main idea of probabilistically checkable proofs.

Definition 12.1. L ∈ PCP(r(n), q(n)) ⇔ ∃ a polynomial time oracle TM V ? with access to O(r(n))
random bits and that makes O(q(n)) queries to its oracle such that

x ∈ L → ∃ Π such that Pr
r

[V Π(x) accepts] = 1

x /∈ L → ∀ Π. Pr
r

[V Π(x) accepts] ≤
1

2

65

LECTURE 12. PROBABLISTICALLY CHECKABLE PROOFS 66

where Π denotes an oracle which we think of as a proof for L. Π is viewed as a table listing all the values
on which it can be queried.

Upper bound on |Π| How big does the proof table need to be? Think of a large table indexed by the
queries and the random strings, this case implies it is at most O(q(n))2O(r(n)). It follows that

Lemma 12.1. PCP(r(n), q(n)) ⊆ NTIME(2O(r(n))q(n)).

A more general formulation There are still two constants in our formulation 1 and 1
2 . We can generalize

PCP further by introducing the notions of the soundness and completeness of the proof system.

Definition 12.2. L ∈ PCPc,s(r(n), q(n)) ⇔ ∃ a polynomial time oracle TM V ? with access to O(r(n))
random bits and that makes O(q(n)) queries to its oracle such that

x ∈ L → ∃ Π such that Pr
r

[V Π(x) accepts] ≥ c (Completeness)

x /∈ L → ∀ Π. Pr
r

[V Π(x) accepts] ≤ s (Soundness)

This formulation is important for some hardness of approximation results. If the parameters are not
specified we assume the original formulation.

Definition 12.3. PCP(poly, poly) =
⋃

k PCP(nk, nk)

Remark. The definition of PCP(poly, poly) was originally motivated by a different way of extending the
idea of IP. This idea was to allow multiple all-powerful instead of just one prover. With such Multiprover
Interactive Proof systems the multiple provers can be used with the restriction that they may not collude with
each other. The set of languages proved in polynomial time in such settings was/is known as MIP. Later it
was shown that the languages in MIP are precisely those in PCP(poly, poly) and the oracle characterization
was used but results are still sometimes stated as results about MIP.

12.2.1 Results about PCP

Immediately from the motivating discussion for the definition of the PCP classes above we have IP ⊆
PCP(poly, poly) and thus the following lemma.

Lemma 12.2. PSPACE ⊆ PCP(poly, poly).

As a corollary to Lemma 12.1 we have

Lemma 12.3. PCP(poly, poly) ⊆ NEXP and for any polynomial q(n) we have PCP(log n, q(n)) ⊆ NP.

The main results about PCP are the following which show strong converses of the above simple inclu-
sions.

Theorem 12.4 (Babai-Fortnow-Lund). PCP(poly, poly) = NEXP.

The following result is so strong it is known as the PCP Theorem. It was the culimination of a sequence
improvements of the above result by Babai, Levin, Fortnow, and Szegedy, by Feige, Goldwasser, Lovasz,
Safra, and Szegedy and by Arora and Safra.

LECTURE 12. PROBABLISTICALLY CHECKABLE PROOFS 67

Theorem 12.5 (Arora-Lund-Motwani-Szegedy-Sudan). NP = PCP(log n, 1).

It is interesting to note that the O(1) in the number of queries and can actually be reduced to 3 in the
strongest versions of the PCP Theorem. This is important for many of the results about approximation
problems. For example in approximating CLIQUE this stronger version is used to show that it is hard to
approximate CLIQUE with even an n1−o(1) factor.

Note that the PCP Theorem can be seens as a strict strengthening of the result of Babai, Fortnow, and
Lund since it yields the following corollary.

Corollary 12.6. PCP(poly, 1) = NEXP.

Over the next several lectures we will go over the proofs of these theorems. To begin with we need a
convenient characterization for NEXP.

12.2.2 A Complete Problem for NEXP

3SAT worked nicely as a complete problem for NP, so it is natural to look for an analog of 3SAT for NEXP.
In fact, the Cook-Levin tableau argument will again be our basis for showing completeness.

The analogous problem will be an implicitly defined version of 3SAT. First we will define a problem
ORACLE-3SAT that we will directly show to be NEXP-complete. ORACLE-3SAT will be 3SAT defined
on exponential size formulas in 3CNF defined on 2n variables and 2m clauses.

Definition 12.4. An oracle truth assignment is a function A : {0, 1}n → {0, 1} where we interpret A(v) =
1 ⇔ xv = 1.

Definition 12.5. An oracle 3CNF is a map C : {0, 1}m → {0, 1}3n+3 that specifies, given the index w ∈
{0, 1}m of a clause, the 3 variables in that clause and the three signs for those variables. For convenience, the
output C(w) be represented by a tuple (v1, v2, v3, s1, s2, s3) where v1, v2, v3 ∈ {0, 1}n, s1, s2, s3 ∈ {0, 1}
and the clause represented is xs1

v1
∨ xs2

v2
∨ xs3

v3
where x0 denotes x and x1 denotes ¬x.

Definition 12.6. An oracle 3CNF C is satisfiable if and only if there exists an oracle truth assignment A
such that for all w ∈ {0, 1}m there exists an i ∈ {1, 2, 3} such that if C(w) = (v1, v2, v3, s1, s2, s3) then
A(vi) = si.

Definition 12.7. We will represent oracle 3CNF formulas using multi-output combinational circuits C com-
puting functions C : {0, 1}m → {0, 1}3n+3. Therefore we define

ORACLE-3SAT = {〈C〉 | C is a Boolean circuit representing a satisfiable oracle 3CNF}.

Lemma 12.7. ORACLE-3SAT is NEXP-Complete

Proof. Given a circuit C let m be the number of inputs to C and 3n + 3 be the number of outputs of
C . Given C , a NEXP machine can clearly guess and write down a truth assignment S for all 2n choices
of v ∈ {0, 1}n and then verify that for all 2m values of w, clause C(w) is satisfied by A. Therefore
ORACLE-3SAT ∈ NEXP.

Let L be an arbitrary language in NEXP. Now consider the Cook-Levin tableau for L and how this
converts first to a CIRCUIT-SAT problem and then to a 3SAT problem. For some polynomial p, The
tableau has width 2p(|x|) and height 2p(|x|). The first |x| entries in the first row depend on x; the remainder of

LECTURE 12. PROBABLISTICALLY CHECKABLE PROOFS 68

the first row are based on generic nondeterministic guesses y and in the entire rest of the tableau the tableau
is very generic with each entry based on the 3 entries immediately above it in the tableau. Except for the
first entries in this table the complexity of each local window depends only on the complexity of the Turing
machine for L which is constant size and the only difference is the dependence of the first |x| entries on x.

Now consider the 3CNF formula that results from the reduction of the CIRCUIT-SAT formula which
simulates this tableau. Given the indices (i, j) in binary of a cell in the tableau it is easy to describe in
polynomial time what the connections of the pieces of the circuit are that simulates this tableau and therefore
what the pieces of the 3CNF formula are that will be produced as the 3CNF formula in the Cook-Levin proof.
Thus we have a polynomial-time algorithm C ′ that, based on the index of a clause, will produce a 3-clause
that is in an (exponential-size) 3CNF formula ϕ such that x ∈ L if and only if ϕ is satisfiable. Since C ′ is
a polynomial-time algorithm there is a polynomial size circuit C that simulates C ′; moreover it is very easy
to produce C given the input x and the description of the Turing machine for L. The reduction maps x to
〈C〉. Clearly x ∈ L if and only if 〈C〉 ∈ ORACLE-3SAT.

ORACLE-3SAT is slightly inconvenient to use for our purposes so we will use a variant of the idea
that includes as a single Boolean function both the output of the circuit and the verification of the 3-CNF
clause that it outputs. Suppose that C is a boolean circuit with g gates. Consider a function B which takes
as input: the original input w to C , a triple of 3 variables v1, v2, v3 output by C and purported values of each
of the gates of C and 3 binary values a1, a2, a3 and states that if on input w, the variables appearing in the
output clause of C are correctly represented in the input description for B and the values of the gates of C
are correctly represented in the input description to B then the signs of the clause output by C on input w
will evaluate to true if variable xv1 = a1, xv2 = a2 and xv3 = a3. Because we have included the values of
the internal gates of C we can easily express B as a Boolean formula based on C .

More formally: B : {0, 1}m+g+3n+3 → {0, 1} is defined as follows where |w| = m, |z| = g, |vi| = n,
and |ai| = 1.

B(w, z, v1, v2, v3, a1, a2, a3)

=
∨

s1,s2,s3

(C(w) = (v1, v2, v3, s1, s2, s3) and z represents values of the gates of C) → ∃i. (si = ai)

The fact that B can represented as a Boolean formula simply mirrors the usual argument converting
CIRCUIT-SAT to SAT.

Notice that the definition of B implies that for an oracle assignment A,

A satisfies C ⇔ ∀w, z, v1, v2, v3 B(w, z, v1, v2, v3, A(v1), A(v2), A(v3)).

Definition 12.8. A Boolean formula B in h + 3n + 3 variables is a satisfiable implicit 3CNF formula iff
there is an oracle truth assignment A : {0, 1}n → {0, 1} such that ∀w′ ∈ {0, 1}h, ∀v1, v2, v3 ∈ {0, 1}n,
B(w′, v1, v2, v3, A(v1), A(v2), A(v3)) is true.

Definition 12.9. IMPLICIT-3SAT = {〈B〉 | B is a satisfiable implicit 3CNF formula }.

Clearly the conversion from 〈C〉 to 〈B〉 as defined above is polynomial time so we have that ORACLE-
3SAT is polynomial time reducible to IMPLICIT-3SAT and thus:

Theorem 12.8. IMPLICIT-3SAT is NEXP-Complete.

Now that we have a complete problem for NEXP, we need to show how to convince ourselves in the
required time bounds to achieve our goal of showing that NEXP = PCP(poly, poly).

LECTURE 12. PROBABLISTICALLY CHECKABLE PROOFS 69

12.2.3 Verification procedure for an oracle truth assignment

1st idea The definition of the satisfiability of the implicit 3CNF B can easily be seen to be computation
that can be done in coNPA since there are only universal quantifiers other than the oracle calls and the
evaluation of B. Since coNPA ⊆ PSPACEA we could try to modify the IP=PSPACE to use an oracle.

This IP procotol relied on our ability to arithmetize formulas, like quantified versions of B that give
values over {0, 1}, to polynomials over a field F of moderate size. It then relied on the ability to query such
functions on randomly chosen field elements r ∈ F. In trying to apply the protocol here there is no problem
with arithmetizing B. However, so far, we only have an oracle A that gives Boolean outputs given an input
string v ∈ {0, 1}n; we would need to be able to evaluate A on elements of F

n instead.

Fortunately, we can do this by using a multilinear extension of A.

Definition 12.10. A function in n variables is multilinear if and only if it can be expressed as a multivariate
polynomial which has degree at most 1 in each variable.

Lemma 12.9. For any A : {0, 1}n → F there is a (unique) multilinear polynomial that extends A. That is
there exists a multilinear Â : F

n → F such that Â(v) = A(v) for v ∈ {0, 1}n.

Proof. Let Â(x) =
∑

v∈{0,1}n A(v)
∏

xi

∏
(1−xi). This is the desired multilinear polynomial. Uniqueness

is left as an exercise.

So we have two parts for the proof table so far: A table of the multilinear oracle Â and the full interaction

tree for the IPÂ protocol for the coNPÂ problem of verifying that Â satisfies B.

However, this is not enough. The prover might not produce a correct table of Â! Thus, in addition to
Â, the proof table must include part that allows the verifier to check with some certainty that Â really is a
multilinear extension of a truth assignment.

Actually, because the prover can only check a small part of the table there will be no way to convince
the verifier that the table Â really is multilinear. However, as we will see in the next lecture, we just need it
to be close to such an extension which is something the verifier will be able check.

