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10.1 The Collapse Lemma

The main lemma of this lecture is the following:

Lemma 10.1 (Babai). MA ⊆ AM = AM[k] = MA[k + 1], for any constant k. That is, AM can simulate
any constant round Arthur-Merlin game.

Proof. Suppose that there are two rounds of the Arthur-Merlin game that go in sequence MA.... We show
how to simulate them by a modified game that begins AM... and has the same alternation pattern after the
first two rounds. This will be enough to prove the claim because it will also allow us to convert any game
sequence AMA... to AAM... = AM... and MAM... to AMM... = AM....

It is somewhat intuitive that AM should be more powerful than MA, because in the former Merlin gets
to look at the random bits before deciding on his answer. The argument first shows that one can bound the
increase in Merlin’s power and then use amplification of the original protocol to ensure that this increase in
Merlin’s convincing power is not enough to allow him to cheat.

Start with a zero-one random variable V (x, y, r). Think of V as determining whether the protocol
accepts in the remaining rounds. Define H(x, yr) = Pr[V (x, y, r) = 1], where the probability is over
remaining rounds of the protocol (not r). Let Ψ(x) = MyAr H(x, y, r) be the probability that theMA...
protocol accepts x. Also, say that the ys are taken from the set Y and the rs are taken from the set R. We
use A for averaging over the set R and M for maximizing over the set Y .

Lemma 10.2. For any function H , ArMy H(x, y, r) ≤ |Y |MyAr H(x, y, r).

This quantifier swap will be the basis for simulating the MA... protocol by an AM... protocol. The size
of Y will be exponential in the length of x, so we lose a lot of accuracy by switching from MA to AM, but
we will show that this loss can be counteracted by amplifying the success probability of the original protocol
sufficiently using amplification for Arthur-Merlin games which is essentially a variant of the amplification
from Lemma 9.2.

Proof. We can get a crude upper bound on the maximum y by summing over all choices of y:

ArMy H(x, y, r) ≤ ArΣy∈Y H(x, y, r)
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The averaging quantifier is really just a summation divided by the number of terms in the summation, so it
commutes with the sum over y:

ArMy H(x, y, r) ≤ Σy∈Y Ar H(x, y, r)

Next we upper bound the sum over y by the maximum y times the number of choices of y:

ArMy H(x, y, r) ≤ |Y |MyAr H(x, y, r)

This gives the desired bound.

Back to the proof of the main lemma, we started with an MA... protocol, which looks like

∃y Rr V (x, y, r) = 1

Our new protocol will start by picking a sequence of random strings, r1 . . . rm ∈ R, where m is polynomial
in the length of x. Our new AM protocol will look like

Rr1 . . . rmMy Majoritym
i=1(V (x, y, ri)).

Lemma 10.3. The acceptance probability of the new AM... majority protocol is

1 − 2m(1 − Ψ(x))m/2 ≤ A(r1 . . . rm)My Majorityi(V (x, y, ri)) ≤ 2m|Y |Ψ(x)m/2

Proof. We will prove the lower bound first. For the protocol to reject, at least half of the ris must lead to a
rejection. This give us

∃I ⊆ {1 . . . m}, |I| = dm/2e such that V (x, y, ri) rejects for all i ∈ I.

In the new AM protocol Merlin could send the same string as in the MA protocol irrespective of the random
string ri. This would give the same success probability Ψ(x), which we will use as a lower bound for the
success of one invocation of V (x, y, ri). Then we have

Pr[all trials in I fail] ≤ (1 − Ψ(x))|I|

= (1 − Ψ(x))m/2

We can upper bound the number of choices of I by 2m, so

total failure probability ≤ 2m(1 − Ψ(x))m/2

This gives the lower bound on success claimed in the lemma.

For the upper bound we use the same definition of I , but want all trials in I to accept. This happens with
probability:

Pr[∀i ∈ I. V (x, y, r) = 1] = Πi∈I Pr[V (x, y, r) = 1]

= Πi∈IH(x, y, r)
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For any fixed y, we can average over the choices of r1 . . . rm:

A(r1 . . . rm) Majorityi(V (x, y, ri)) ≤
Σr1...rm∈RmΣI⊆1...m,|I|=dm/2eΠi∈IH(x, y, ri)

|R|m

≤ ΣI
Σr1...rm∈RmΠi∈IH(x, y, ri)

|R|m

We can replace the average over elements of Rm with an average over elements of RI since only indices
from I affect the probability, so:

A(r1 . . . rm)Majorityi(V (x, y, ri)) ≤ ΣI
Σ~r∈RI Πi∈IH(x, y, ri)

|R||I|

= ΣIΠi∈I

(

Σri∈R
H(x, y, ri)

|R|

)

= ΣI (Ar H(x, y, r))m/2

Now replace the arbitrary y with the best possible y:

MyA(r1 . . . rm) Majorityi(V (x, y, ri)) ≤ ΣI (MyArH(x, y, r))m/2

= ΣI(Ψ(x))m/2

≤ 2mΨ(x)m/2

Combining this with lemma 10.3 we get

A(r1 . . . rm)My Majorityi(V (x, y, ri)) ≤ 2m|Y |Ψ(x)m/2

Now that we have established the bounds we will set the value of the parameters. Let m = 2 log2 |Y |+4.
Assume without loss of generality that for x /∈ L, Ψ(x) ≤ 1/8 and for x ∈ L, Ψ(x) ≥ 7/8. Then the
probability of the new AM protocol accepting an x /∈ L is at most:

A(r1 . . . rm)My Majorityi(V (x, y, ri)) ≤ 2m|Y |Ψ(x)m/2

≤ 2m2−3m/2|Y |

= 2− log
2
|Y |−2|Y |

=
1
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The probability of accepting an x ∈ L is at least:

A(r1 . . . rm)My Majorityi(V (x, y, ri)) ≥ 1 − 2m(1 − Ψ(x))m/2

≥ 1 − 2m(
1

8
)m/2

= 1 − 2−m/2

= 1 − 2− log
2
|Y |−2

= 1 −
1

4|Y |

≥
3

4

This concludes the proof.

10.2 Variable-round games

The proof in the last section allows any constant number of Arthur-Merlin rounds to be reduced to a single
AM round. This can’t be extended directly to variable round protocols because there is a polynomial blowup
in each switch, which would lead to an exponential blowup in variable round protocols. The following
lemma allows for variable round reductions. We will only outline the idea of the proof.

Lemma 10.4 (Babai-Moran). AM[2t(n)] ⊆ AM[t(n) + 1].

Proof Sketch. The main idea is to convert a single MAM round to an AMA round. As before, Arthur will
start by sending a collection of random seeds r1 . . . rm. After Merlin gives a response y1 . . . ym as well as
z1, dotsczm, Merlin’s responses for the third round of the game given the correspond choices of yi and ri.
Arthur sends a random i ∈ {1 . . . m}. The protocol the proceeds as if the original game had been played
with the sequence yi, ri, zi had been the only interaction so far. This leaves no blowup in the number of
games that must be continued (although there is a polynomial blow-up for this triple of rounds). This allows
all the MAM seqeunces to be replaced by AMA sequences in parallel with a single polynomial size blow-up.
The general idea is that if the overwhelming majority of continuations don’t allow Merlin to cheat too much
then Arthur will likely pick one on which he won’t be fooled.

10.3 AM games and the Polytime Hierarchy

We can now relate Arthur-Merlin games and the polynomial time hierarchy.

Lemma 10.5. AM ⊆ Π2P

Proof. The proof is a direct analogue of the Sipser-Gacs-Lautemann proof of BPP ⊆ Σ2P ∩ Π2P (see
Lecture 3 Theorem 3.5). In that proof we defined S = {r | M(x, r) = 1} to be the set of random strings
that lead to acceptance of M on input x. We then gave a Σ2P algorithm that accepts the input x if and only
if the set S is large. Since BPP is closed under complement, by applying the protocol to S̄ we obtain a Σ2P

algorithm for Ā and thus a Π2P algorithm for L. In particular, this Π2P expression says that x ∈ A if and
only if

∀t1 . . . tp(|x|) ∈ {0, 1}p(|x|)∃p(|x|)r for all j ∈ {1, . . . , p(|x|)}. M(x, r ⊕ tj) = 0.
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(Since there are only p(|x|) values of j the inner portion can be recognized in polynomial time.)

For the current proof we view AM as BP · NP, and the set S associated with a language L defined by an
AM protocol with verifier V is S = {r | ∃y V (x, y, r) = 1}. The new expression is then

∀t1 . . . tp(|x|) ∈ {0, 1}p(|x|)∃p(|x|)r such that for all j ∈ {1, . . . , p(|x|)}, ∃y V (x, y, r ⊕ tj) = 0,

which is equivalent to

∀t1 . . . tp(|x|) ∈ {0, 1}p(|x|)∃p(|x|)r∃(y1, . . . , yp(|x|)) s.t. for all j ∈ {1, . . . , p(|x|)}, V (x, yj , r ⊕ tj) = 0.

This is a Π2P expression for L.

Lemma 10.6. MA ⊆ Σ2P ∩ Π2P

Proof. We can view MA as N · BPP. We know that BPP has a Σ2P representation. Adding on another
existential quantifier for the Merlin step gives a language that is still in Σ2P, so MA ⊆ Σ2P. We know that
MA ⊆ AM, and that AM ⊆ Π2P, so MA ⊆ Π2P as well.

10.4 Graph Isomorphism is unlikely to be NP-complete

With the results from today we can easily show that GRAPH-ISOMORPHISM being NP-complete leads to
the polynomial time hierarchy collapsing.

Lemma 10.7. If coNP ⊆ AM then PH = Σ2P ∩ Π2P = AM.

Proof. Let L ∈ Σ2P. We will show that under the assumption coNP ⊆ AM we get L ∈ AM ⊆ Π2P, which
causes the hierarchy to collapse at the second level. Since L ∈ Σ2P, by Theorem 2.2 we can express L as

L = {x | ∃p(|x|)y. (x, y) ∈ L1}

where L1 ∈ coNP}. If coNP ⊆ AM then L1 ∈ AM, so L ∈ MAM by treating the existential quantifier as a
Merlin step. But by the collapse lemma from this lecture, MAM = AM ⊆ Π2P, and the hierarchy collapses
to Σ2P = AM = Π2P.

Corollary 10.8. If GRAPH-ISOMORPHISM is NP-complete then PH = Σ2P ∩ Π2P = AM.

Proof. If GRAPH-ISOMORPHISM is NP-complete then GRAPH-NONISOMORPHISM is coNP-
complete. We know from last lecture that GRAPH-NONISOMORPHISM ∈ AM, implying that coNP ⊆
AM. From the above lemma this causes the polynomial time hierarchy to collapse as in the conclusion.


