
Lecture 9

Interactive Proofs and Arthur-Merlin Games

April 27, 2004
Lecturer: Paul Beame

Notes: Chris Ré

9.1 Background and Motivation

In the 1980’s two notions interactive computation were developed. One, due to Babai, originated in gener-
alizations of NP to allow more powerful verifiers that include probabilistic verification. The other, due to
Goldwasser, Micali, and Rackoff, originated in cryptography and was a means to the end of defining zero-
knowledge proofs, protocols that allow a party in a cryptographic protocol to convince another party of some
property without revealing additional information. (In this course we will not discuss the zero-knowledge
aspects, however.) Today’s lecture will focus on showing the relationship between these two definitions of
interactive computation. (Combined, these two papers won the Gödel Prize.) The definitions here began
research on the path to the PCP theorem.

9.2 Interactive Proof Preliminaries

We can view a typical NP algorithm as an interaction between an all-powerful prover P and a deterministic
polynomial-time bounded verifier V . On a shared input x that the verifier wishes to prove is in L, the prover
produces y, a certificate depending on x, sends the certificate y to the verifier and the verifier accepts if and
only if V (x, y) = 1. This can be thought of as one round of interaction. The exact power of the prover is
not important here but everything still must be verifiable by the deterministic polynomial time machine. So
perhaps the amount of interaction is important? What if we were to allow more rounds of interaction as in
the following figure?

Formally, we say that a round of an interactive protocol corresponds an uninterrupted sequence of
communications of a single party. In this picture y1, y2, . . . , y` denote the messages sent by the prover
and z1, z2, . . . , z`−1 denote the messages sent in response by the verifier. We can formally define the
verifier as an algorithm V and the actions of the verifier are given by by z1 = V (x1, y1), ..., z` =
V (x, y1, z1, y2, z2, . . . , y`). The prover’s actions can be defined similarly. The (still deterministic) poly-
nomial time verifer accepts iff V (x, y1, z1, y2, z2, . . . , y`) = 1 at the end of the computation. (This is 2`− 1
round computation.)

Definition 9.1. Given a Prover P and a Verifier V let (P, V)(x) denote the output of the verifier on input x
when the protocol (P, V) is executed.

Definition 9.2. (P, V) is an interactive proof for L if and only if

45

LECTURE 9. INTERACTIVE PROOFS AND ARTHUR-MERLIN GAMES 46

Prover Verifier

Figure 9.1: Prover Verifier Interaction

{

(P, V)(x) = 1 for all x ∈ L

(P ∗, V)(x) = 1 for all x /∈ L for all provers P ∗.

We claim this is the same power as NP.

Lemma 9.1. Interactive proofs with deterministic polynomial-time verifiers yields proofs for precisely the
languages in NP.

Proof. To see this, notice that for a multi-round proof the prover can determine in advance what the verifier
will say at each response and simply send the entire sequence (y1, z1, . . . , y`) to the verifier which yields a
single round of interaction and thus NP.

In each of the protocols it sufficed for the prover to have the power of NP in order to execute the protocol.
However, our limits on the power of the verifier were what restricted the set of languages for which we had
interactive proofs.

9.3 Interactive Proofs

Straight interaction with a deterministic verifier did not buy us any extra power. So instead we allow the
Verifier to have access to a private random string r. Thus we can define a protocol pair (P, V (r) and its
actions on an input x as before. From now on we will assume that the verifier V (r) runs in polynomial time
as a function of the length of its inputs and that all messages are polynomial-length as a function of |x|.

Definition 9.3. A Prover P and a randomized verifier V with access to a random string r accepts a language
L if and only if for some ε < 1/2,







Pr
r∈{0,1}|x|

O(1) [(P, V (r))(x) = 1] > 1 − ε for x ∈ L

∀P ∗. Pr
r∈{0,1}|x|

O(1) [(P ∗, V (r))(x) = 1] ≤ ε for x /∈ L.

LECTURE 9. INTERACTIVE PROOFS AND ARTHUR-MERLIN GAMES 47

Notice that this is a BPP-like acceptance. It is common to say that the verifier is convinced if it accepts
the interactive computation. A parameter we will be concerned with is the number of rounds. Notice that
these are not round-trips but sending in one direction. This method of counting rounds corresponds nicely
to alternation in the polynomial hierarchy. We can now define a complexity class of these interactions.

Definition 9.4. Define IP[k(n)] to be the set of languages L such that given an x ∈ L there is a (polynomial-
time randomized) protocol that takes at most k(n) rounds to convince the verifier of x’s membership in L.

Definition 9.5. IP = IP [nO(1)] = IP [Poly(n)].

The following is an easy exercise.

Exercise 9.1. IP ⊆ PSPACE.

We will later prove that the reverse inclusion also holds, i.e. IP = PSPACE.

9.3.1 Graph Non-isomorphism ∈ IP[2]

Definition 9.6. GRAPH-NON-ISOMORPHISM =
{〈G0, G1〉 | G0, G1 are encodings of graphs and ∀σ ∈ S|V (G0)|, σ(G0) 6= G1}.

Notice the problem GRAPH-ISOMORPHISM of graph isomorphism is in NP since we can guess which
permutation to use. This problem will be particularly interesting. Later we will show that if GRAPH-
ISOMORPHISM were NP-complete then the polynomial-time hierarchy collapses.

Protocol

We will now give a 2 round protocol to decide GRAPH-NON-ISOMORPHISM. Both prover and verifier
have access to G0 and G1.

V → P : Verifier chooses c ∈R {0, 1}, chooses σ ∈R Sn where n = |V (G0)|.

Verifier sends σ(Gc) to the prover.

P → V : The prover, with all possible computation power, determines to which of the two graphs this one is
supposed to be isomorphic, say Gb for b ∈ {0, 1}. (If the input graphs are isomorphic to each other
the prover can choose b randomly.) The prover send b to the verifer.

Verification: The Verifier accepts iff b = c.

Discussion of Protocol

The important thing to notice is that if 〈G0, G1〉 is not in L, that is they are isomorphic graphs then the
prover has exactly a 50-50 chance of guessing which value the verifier chose for c. If 〈G0, G1〉 ∈ L then the
prover should never get it wrong.

This acceptance condition yields a probability only of 1/2. We can massage this into the correct form
that we can execute many copies in parallel. That is in the first round the verifier ships G1, .., Gk to the
prover where each Gi is an independent uniformly random selection according to the first round of the

LECTURE 9. INTERACTIVE PROOFS AND ARTHUR-MERLIN GAMES 48

original protocol. The verifier accepts only if the prover answers correctly for each of the graphs. This does
not increase the number of rounds but the prover only fools the verifier with probability 1

2k . Notice that it is
crucial that the verifier not have access to the coin flips.

BPP and RP have Amplification Lemmas and these essentially carry over with us now using parallel
independent invocations of the verifier as an analog of multiple independent copies of the machine.

Lemma 9.2 (IP Amplification Lemma). Let p(n) be a polynomial. Let V be a Verifier which on inputs
of length n, a total of g(n) messages each of length m(n), using `(n) random bits and error probability at
most 1/2 − δ(n). Then there is a V ′ such that L(V) = L(V ′), using at most g(n) messages, each of length
O(p(n)m(n)/δ2(n)) using O(p(n)`(n)/δ2(n)) random bits and with an error probability at most 2−p(n).

Proof. (P ′, V ′) perform O(p(n)/δ2(n)) independent parallel simulations of (P, V) and V ′ takes the ma-
jority of the answers. Clearly this blows up the message by the corresponding orders of magnitude and
the number of rounds is unchanged. The calculation for the probability of success is identitical that of
Lemma 3.3

9.4 Arthur-Merlin Games

In this variant of interactive protocols at any point the in the protocol the Prover (now the all-powerful wizard
Merlin) is allowed access to all the random coins used by the Verifier (now the not-so smart king Arthur)
so far. With this definition it suffices to assume that the strings that are passed back and forth now simply
contain the random guesses used by Arthur since it is clear that Merlin, who is all powerful, could easily
have computed whatever string Arthur would have computed based on these random guesses.

The key is that Merlin is unaware of the outcomes of the coin before the Arthur sends them to him
Notice that Merlin is powerful enough to simulate all possible flips of the coin ahead of time and therefore
can play optimally. The game ends with a polynomial time deterministic verification based on the input and
the message exchanged. We now use ri to denote the i-th random string that Arthur sent. The acceptance
condition is BPP-like as with ordinary interactive proofs. More precisely, there is a deterministic polynomial
time verifier A and a prover M such that if (r1, y1, . . . , y`) is the sequence of communicated values on input
x, where each ri is chosen uniformly at random, then Pr

r∈{0,1}|x|
O(1) [A(x, z1, r1, y1, ..., yk) = 1] > 1− ε if

x ∈ L and for all choices of (y∗
1, . . . , y

∗
k), Pr

r∈{0,1}|x|
O(1) [A(x, z1, r1, y1, ..., yk) = 1] < ε if x /∈ L. We still

count rounds in the half round trips and either party is allowed to go first.

9.4.1 Arthur-Merlin Complexity Classes

We denote the complexity class of languages accepted by Arthur-Merlin protocols by an alternating se-
quence of letters A and M where the number of letters equal to the number of rounds. For example, AMA =
{ L | there is a 3 round Arthur-Merlin protocol for L in which Arthur starts}.

Notice that ending at an A is like having a BPP machine to do the verification. The class M is NP and
the class A is BPP.

Consider the following view of AM:

L ∈ AM if and only if there is a polynomial-time verifier V , and a polynomial p such that ∀x,

Pr[R
p(|x|)r∃p(|x|)yV (x, y, r) = 1] is

{

> 1 − ε if x ∈ L

≤ ε if x /∈ L

LECTURE 9. INTERACTIVE PROOFS AND ARTHUR-MERLIN GAMES 49

The first quantifier acts like a BPP machine that makes one call to an NP oracle accepting its answer; so
AM = BP · NP. The value of the Arthur-Merlin game is defined to be the probability that Arthur (the
verifier) is convinced given optimal play by Merlin. We can express the value of the Arthur-Merlin game on
input x using a form of quantifier, namely A as an Averaging quantifier and M as a Maximization quantifier.
The value of the above AM protocol is then Ap(|x|)r Mp(|x|)y. V (x, y, r). This use of A and M as the
quantifiers is the source of the names Arthur and Merlin.

Now consider MA. In this case after doing all the nondeterministic work, we get access to a BPP

machine, so we get MA = N · BPP. In quantifiers with a similar verifier the game would have a value
Mp(|x|)r Ap(x)y. V (x, y, r).

Definition 9.7. Define
AM[k] = {L | L has a k round Arthur-Merlin game with Arthur starting} and
MA[k] = {L | L has a k round Arthur-Merlin game with Merlin starting}.

Today we will describe the surprising result that Arthur-Merlin games and interactive proofs are essen-
tially equivalent in power.

Theorem 9.3 (Goldwasser, Sipser). IP[t(n)] ⊆ AM[t(n)+2]

Next class we will prove the following Theorem.

Theorem 9.4 (Babai, Babai-Moran). For constant k ≥ 2, AM = AM[k] = MA[k + 1], moreover, for any
t(n). AM[2t(n)] ⊆ AM[t(n)+1].

From these two theorems and the protocol for GRAPH-NON-ISOMORPHISM we derive.

Corollary 9.5. GRAPH-NON-ISOMORPHISM ∈ AM

This is a bit surprising since our protocol relied so heavily on the secret coins which have disappeared
in the Arthur-Merlin model.

Proof of Theorem 9.3. Suppose there is an interactive proof (P, V) for L. Merlin will convince Arthur that
P would have convinced V for a large fraction of random strings r. The key to doing this will be to derive a
short protocol that will convince Arthur that certain sets are large. This will be done using universal hashing.

Definition 9.8. A (pairwise-independent) universal hash function family is a family of functions, H , from
a set U to a set V satisfying the following properties:

• For all h ∈ H , h : U → V .

• For all x ∈ U and for all y ∈ V , Prh∈RH [h(x) = y] = 1
|V | .

• For all x1, x2 ∈ U with x1 6= x2 and for all y1, y2 ∈ V , Prh∈RH [h(x1) = y1 and h(x2) = y2] = 1
|V |2

.

Notice that the third property is a pairwise independence property, saying that knowing where one item
is hashed does not give any information about where another item is hashed. The following is an example
of such a family of hash functions.

LECTURE 9. INTERACTIVE PROOFS AND ARTHUR-MERLIN GAMES 50

Example 9.1. Let U = {0, 1}n = F
n
2 , V = {0, 1}m = F

m
2 . Choose an n × m matrix A ∈ {0, 1}n×m =

F
n×m
2 , and a vector v ∈ {0, 1}m = F

m
2 . Then define hA,v(x) = Ax + v over F2. Let H be the set of all

such functions. Note the similarity to the functions used in the proof of the Valiant-Vazirani lemma. The
addition of the random vector v allows us to get around the fact that linear transformations always map the
vector 0 ∈ V to 0 ∈ V and ensure that for h chosen at random, the output is a random vector in V and
thus the second condition holds. The third condition holds by the same reasoning as in the proof of the
Valiant-Vazirani lemma.

The following lemma gives the basis for the set size lower bound protocol.

Lemma 9.6. Let S ⊆ U = {0, 1}n, V and a universal hash function family H from U to V . Select t = 2n
hash functions h1, . . . , ht ∈R H and s = 3n points r1, . . . , rs ∈R V .

1. If |S| ≥ |V |/2 then Pr[∃i, j such that rj ∈ hi(S)] ≥ 1 − 2−n.

2. If |S| < |V |/d then Pr[∃i, j such that rj ∈ hi(S)] < 6n2/d.

Proof. Fix r ∈ V and i ∈ {1, . . . , t}. For any z ∈ U , Prh∈RH [h(z) = r] = 1
|V | by definition of H . If

|S| ≥ |V |/2, let S ′ consist of the first |V |/2 elements of S. By inclusion-exclusion, for h ∈R H ,

Pr[∃z ∈ S. h(z) = r] ≥ Pr[∃z ∈ S ′. h(z) = r]

≥
∑

z∈S′

Pr[h(z) = r] −
∑

z′ 6=z∈S′

Pr[h(z) = r and h(z′) = r]

= (
|S′|

|V |
−

|S′|(|S′| − 1)

2
) ·

1

|V |2

≥ 1/2 − 1/8 = 3/8

This implies that E[|h(S ′)|] =
∑

r∈V Pr[r ∈ h(S ′)] ≥ 3|V |/8. Now consider the probability that
Prh∈RH [|h(S′)|] ≥ |V |/4? Using the fact that for any h, |h(S ′)| ≤ |S′| ≤ |V |/2, a standard Markov’s
inequality argument shows that this probability is at least 1/2: Suppose the probability is < 1/2. Then
E[|h(S′)|] < 1

2 · |V |/2 + 1
2 |V |/4 = 3|V |/8, contradicting our lower bound on E[|h(S ′)|].

Therefore if we choose h1, . . . , hn+1 ∈R H ,

Pr
h1,...hn+1∈RH

[∃i. |hi(S
′)| ≥ |V |/4] ≥ 1 − 2−2n.

Suppose now that this holds. Thus the probability that every rj ∈R V is /∈
⋃

i hi(S
′) is at most 3/4

and the choices are independent. Therefore the probability that none of the rj is in
⋃

i hi(S) is at most
(3/4)s < 2−n−1 for s = 3n. Thus the total failure probability is at most 2−n.

Now suppose that |S| ≤ |V |/d. Then |
⋃

i=1 thi(S)| ≤ t|S| and thus

Pr[∃i, j, such that rj ∈ hi(S)] ≤ st
|S|

|V |
≤ 6n2/d

as required.

Thus, for Merlin to prove to Arthur that a set S ∈ {0, 1}n is large relative to some bound 2b, we have
the following protocol:

LECTURE 9. INTERACTIVE PROOFS AND ARTHUR-MERLIN GAMES 51

Merlin sends to Arthur The value of the bound b.

Arthur sends to Merlin A sequence of random bits interpreted as h1, . . . , h2n independently chosen hash
functions from {0, 1}n to V = {0, 1}b and r1, . . . , r3n independently chosen values from V = {0, 1}b.

Merlin send to Arthur A witness z ∈ S such that hi(z) = rj for some i and j.

If Merlin is unable to produce such a witness then the protocol fails. If |S| ≥ 2b then Merlin is able
to succeed with probability greater than 1 − 2−n; if |S| is much smaller than 2b then the protocol will only
have a polynomially small success probability. It is important that Arthur can play this protocol even if the
set S is implicit or known only to Merlin. The only difference is that if the set S is too small then Merlin is
likely forced to produce a witness z ∈ {0, 1}n − S. Later Arthur may catch Merlin because of this. We will
use this property in sequel.

Note. Note that we could have refined the above argument somewhat by taking advantage of the fact that
all we need is

⋃

i hi(S) to be large rather than any individual hi(S). A small modification of the above
argument will show that

E[|hi(S
′) −

⋃

i′<i

hi′(S
′)|] ≥ 3|V −

⋃

i′<i

hi′(S
′)|/8.

Since the maximum value this quantity can take is at most |V −
⋃

i′<i hi′(S
′)|, the probability that it is at

least 1/4 of this maximum value is at least 1/6 and these events are mutually independent. Thus a constant
fraction of the time each additional hash function reduces the size of the uncovered portion of V by a
constant factor. By choosing O(n) independent hash functions (or even O(b) if a failure probability only
at most 2−b is required) we can assure almost certainly that every point of V is covered by the image of S ′

under some hash function. Thus, only a single random query r is required.

Protocol Overview By the amplication lemma we can assume that that (P, V (r))(x) accepts with very
high probability if x ∈ L and any (P ∗, V (r))(x) accepts with at most exponentially small probability.

Suppose that the set of all random strings used by the verifier V is chosen from {0, 1}`. Merlin contends
that the set of random strings for which V would have been convinced is not very small, say at least 2`−1.
Let Aε = {r | (P, V (r)) accepts} be this set of random strings. We need to decide whether or |Aε| is nearly
2` or exponentially smaller than 2`.

We first will assume that IP protocol is a 2-round protocol of the style that was used for GRAPH-NON-
ISOMORPHISM in which the verifier V first sends a string z and then the prover P sends a string y to the
verifier who makes a final decision based also the random string.

Let z = V (x, ε, r), the string that V would have been sent to P given the random string r ∈ {0, 1}`.
Associated with each message z that V sends in this round there is an optimal response string y = y(z) that
maximizes the probability that V (x, (z, y), r) accepts. (Assume without loss of generality that z ∈ {0, 1}m .)
Now define the set

Az = {r | z = V (x, ε, r) and V (x, (z, y(z)), r) accepts },

the set of all random strings r such that the verifier initially sent z, the prover can respond with y(z) and the
verifier will accept. Clearly Aε =

⋃

z Az where the union is disjoint.

The goal is to give a protocol for an AM protocol that allows Arthur to be convinced that the Verifier
would have accepted this input under the AM acceptance condition. Merlin will do this by proving to Arthur

LECTURE 9. INTERACTIVE PROOFS AND ARTHUR-MERLIN GAMES 52

that with large probability there is a large set of z such that Az is large. To do this, Merlin will choose a set
S1 of z’s each of which has roughly the same size.

The Set S1 a: Command not found. where we have chosen b1 to maximize |
⋃

z∈S1
Az|. That is, we put

the Az into buckets based on the order of magnitude of their size; after binning, we choose the bin that
contributes the most to Aε. By construction,

•
∑

z ∈ S1|Az| ≥
|Aε|

`
and

• for each z ∈ S1, 2b1−1 < |Az| ≤ 2b1 .

Merlin will pick the set S1 and send the value s1 = dlog2 |S1|e to Arthur and convince Arthur that S1 is
large relative to 2s1 . In doing this using the set size lower bound protocol, Merlin will identify and element
z ∈ S1. He will then prove that Az is large relative to 2b1 . If b1 + s1 is large enough, Arthur will accept.

These will be done by applications of the hashing protocol above. As a result, Arthur can be convinced
of the truth of the assertion if we show him that the set is at least a constant fraction 2`

`
.

The Protocol

• M → A: (Round 0)

Merlin computes the set S1, the value b1 and sends s1 = dlog2 |S1|e and b1 to Arthur.

• A → M : (Round 1)

Arthur sends 2` random hash functions h1, . . . , h2` from {0, 1}m to {0, 1}s1 and 3` random
challenge strings r1, . . . , r3` ∈R {0, 1}s1 to Merlin.

Arthur sends 2` random hash functions h′
1, . . . , h

′
2` from {0, 1}` to {0, 1}b1 and 3` random chal-

lenge strings r′1, . . . , r
′
3` ∈R {0, 1}b1 to Merlin.

• M → A: (Round 2)

Merlin produces a string z ∈ S1 such that hi(z) = rj for some i and j if possible. (Otherwise
Merlin chooses an arbitrary string z that maps to one of the rj’s if possible.)

Merlin sends (z, y(z)) as well as (i, j) to Arthur.

Merlin produces a string r ∈ Az such that h′
i′(r) = r′j′ for some i′ and j′ if possible. (Otherwise,

Merlin chooses an arbitrary string r that maps to one of the rj’s if possible.)

Merlin sends r as well as (i′, j′) to Arthur.

• Verify: In the final deterministic verification Arthur checks that hi(z) = rj , that h′
i′(r) = r′j′ , that

V (x, ε, r) = z, that V (x, (z, y), r) accepts (i.e., that r ∈ Az), and that s1 + b1 ≥ ` − log2 ` − 1.

Now let us verify that this yields a good Arthur-Merlin protocol.

LECTURE 9. INTERACTIVE PROOFS AND ARTHUR-MERLIN GAMES 53

If Prr[(P, V (r))(x) = 1] > 1/2: In this case, |Aε| > 2`−1 and thus
∑

z∈S1

|Az| ≥ |Aε|/` > 2`−1/` ≥ 2`−log2 `−1.

Since |S1| ≥ 2s1−1, by Lemma 9.6, Merlin will be able to find the required z ∈ S1 with failure probability
at most 2−`. Then for this z, |Az| ≥ 2b1−1 so again by Lemma 9.6 and the definition of Az , Merlin will be
able to find an r such that h′ hashes r correctly, V (x, ε, r) = z, and V (x, (z, y), r) accepts. Finally, observe
that

∑

z∈S1

|Az| ≤
∑

z∈S1

2b1 = |S1| · 2
b1 ≤ 2b1+s1

and thus b1 + s1 ≥ ` − log2 ` − 1.

If Prr[(P, V (r))(x) = 1] < 1/`7: In this case |Aε| ≤ 2`/`7. Suppose that Merlin tries to cheat Arthur.
What is the chance that Arthur will be convinced? In order for Arthur to be convinced Merlin must send b1

and s1 in Round 0 such that b1+s1 ≥ `−log2 `−1, that is, 2b1+s1 ≥ 2`

2`
. Choose d = `3. Let S′

1 be the set of
all z such that |Az| ≥ 2b1/d. The size of S ′

1 is at most d·|Aε|/2
b1 ≤ 2`−b1/`4 ≤ 2s1+log2 `+1/`4 = 2s1+1/d.

The probability that Merlin could produce an element z of S ′
1 in response to the hash challenge for S1 is

O(`2/d) which is O(1/`). If Merlin does not produce such an element then the probability that Merlin is
able to produce an element r for Az that will convince Arthur is also only O(1/`). Therefore, the total
probability that Arthur is convinced in this case is O(1/`).

This proves correctness in the two round case.

More Rounds In general, for a procotol with more rounds, note that for any prefix of the computation,
once r is fixed, whether or not V will accept beginning with that prefix is a deterministic property using the
optimal play of Merlin. Therefore once Merlin fixes (z1, y1(z1)) for his first response, we can define sets

Az1,z = {r | V (x, ε, r) = z1 and V (x, (z1, y1(z1)), r) = z and V (x, (z1, y1(z1), z, y2(z), . . .), r) accepts },

Az1,z2,z = {r | s = (z1, y1(z1), z2, y2(z2), z, y3(z)) is a valid execution on input x and V (x, (s . . .), r) accepts },

etc. At each round, Merlin will choose an Si consisting of those z in the highest weight bin for the sets
Az1,...,zi−1,z . At each round, Merlin will send Arthur si = dlog2 |Si|e and convince Arthur that |Si| ≥ 2si−1

by sending zi and yi(zi). For the last round of the prover’s communication, Merlin will send bk in addition
to sk, and convince Arthur that |Az1,...,zk

| ≥ 2bk by sending a choice of r. If there are 2k rounds beginning
with then Arthur then there will be a loss of `k in the size of |Aε| at most so Arthur will accept if all the
hash conditions have been met, the final random string and the sequence of zi and yi will yield acceptance,
and bk +

∑k
i=1 si ≥ ` − k log2 ` − 1. By a similar argument to the 2 round case, if the original acceptance

probability is at most 1/`8k−1, then Arthur is convinced only an O(k/`) fraction of the time.

Number of Rounds Notice how many rounds it took to prove the claim. In the new protocol we have
added one communication from Merlin to Arthur of the set size s1 (and b1 in the two round case) at the
beginning and one communication at the end for Merlin to send Arthur the random string r in response to
the last challenge. If the protocol already began and ended with Arthur then this adds two rounds. If the
protocol already began or ended with Merlin (as in the 2 round case) then we add fewer rounds.

