CSE 532 Spring 2004 Computational Complexity Essentials Exercises #2

Problems:

- 1. If you did not solve it for CSE 531 in Fall 2003, show that if NP \subseteq BPP then NP = RP.
- 2. Show that if L is decided by a k-tape NTM in time O(T(n)) then L is decided by a 2-tape NTM in time O(T(n)).
- 3. Prove that #2SAT is #P-complete.
- 4. In the following problems you will consider approximations to #P problems.
 - An algorithm M is an ϵ -approximation for a function f if for all x, $(1 \epsilon)f(x) \le M(x) \le (1 + \epsilon)f(x)$.
 - A randomized algorithm M is an (ϵ, δ) -approximation for a function f if for all x, $\Pr[(1-\epsilon)f(x) \le M(x) \le (1+\epsilon)f(x)] \ge (1-\delta).$
 - A polynomial-time approximation scheme (PTAS) for a function f is a family of polynomial-time algorithms such that for any $\epsilon > 0$ there is a polynomial-time TM M_{ϵ} such that M_{ϵ} is an ϵ -approximation for f.
 - A fully-polynomial randomized approximation scheme (FPRAS) for a function f is a family of algorithms computing an (ϵ, δ) -approximation for f whose running time is polynomial in the input size n, $1/\epsilon$, and $1/\delta$.

FPRAS's for some #P-complete problems have been known for about twenty years. Recently, solving a long-standing problem, Jerrum, Sinclair, and Vigoda developed one for PERM on 01-matrices.

- (a) Show that unless P = NP there is no PTAS for any #P-complete problem.
- (b) Show that unless NP = RP, #HAMCYCLE does not have an FPRAS.
- (c) Show that if NP = RP, then any problem in #P has an FPRAS.
- (d) Show that in the definition of an FPRAS we can without loss of generality improve the running time to polynomial in $\log(1/\delta)$ but that we cannot improve the running time from polynomial in $1/\epsilon$ to polynomial in $\log(1/\epsilon)$ unless NP = RP.
- 5. Approximate Counting is in the polynomial-time hierarchy: Using similar ideas to the proof that $\mathsf{BPP} \in \Sigma_2 \mathsf{P} \cap \Pi_2 \mathsf{P}$, show that for any $\epsilon > 0$ there is an ϵ -approximation in $\mathsf{FP}^{\Sigma_2 \mathsf{P}}$ for any problem in $\#\mathsf{P}$.
- 6. Unbounded fan-in circuits and Toda's Theorem: We can define *unbounded fan-in circuits* over a basis Ω_0 consisting of \neg and unbounded fan-in \land and \lor . The non-uniform complexity class AC⁰ consists of all languages (or Boolean functions) computable by families of

polynomial-size, constant-depth unbounded fan-in circuits in this basis; that is, circuit families $\{C_n\}_{n=0}^{\infty}$ in this basis such that $size(C_n)$ is $n^{O(1)}$ and $depth(C_n)$ is O(1). A function $f \in \mathbb{B}_n$ is symmetric iff for any permutation $\sigma \in S_n$,

$$f(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Scale down the construction from the proof of Toda's theorem to show that for any $L \in AC^0$ there is a constant k such that L can be decided by a family of circuits $\{C'_n\}_{n=0}^{\infty}$, such that for each n, the output gate of C'_n is a symmetric function of fan-in $n^{O(\log^k n)} = 2^{O(\log^{k+1} n)}$, each of whose inputs is an \wedge of $O(\log^k n)$ input variables or their negations.