CSE 532 Spring 2004 Computational Complexity Essentials Exercises #1

Problems:

- 1. Show that if $\mathsf{NP} \subseteq \mathsf{TIME}(n^{\log n})$ then $\Sigma_k \mathsf{P} \subseteq \mathsf{TIME}(n^{\log^k n})$.
- 2. In this problem you will prove Cobham's theorem regarding

PALINDROME =
$$\{x \in \{0, 1\}^* \mid x = x^R\}.$$

For a 1-tape Turing Machine M with state set Q and tape cell i of M define the crossing sequence of M at on input x as the ordered sequence of states $\sigma_i \in Q^* \cup Q^\infty$ consisting of the states that M is in as it passes the boundary between cell i and cell i + 1. Note that the directions that the read head of M moves as it crosses this boundary alternates R and L, beginning with R since M starts at the left end of the tape. Consider the behavior of a 1-tape TM M for PALINDROME that takes time T(n) on inputs of the form $\{y0^{2n}y^R : n = |y|\}$. Suppose that M that (without loss of generality) M ends its computation at the right end of the input, i.e. cell 4n + 1.

- (a) Show that if M takes time at most T(n) on input $y0^{2n}y^R$ then the average crossing sequence $|\sigma_i| = |\sigma_i^y|$ for $i \in [n, 3n]$ is O(T(n)/n).
- (b) Show that there is some $i \in [n, 3n]$ such that $|\sigma_i^y|$ is O(T(n)/n) for all y in a large subset of $\{0, 1\}^n$.
- (c) Use this to show that if $T(n) = o(n^2)$ then M will accept some input of the form $y0^{2n}x^R$ for |x| = |y| = n and $x \neq y$.
- 3. In this problem you will derive Lupanov's bound on the worst-case size required to compute any Boolean function on n bits. One of the keys is to represent functions as polynomials modulo 2. Thus every function f : {0,1}ⁿ → {0,1} can be written as a polynomial ∑_{α∈S} ∏ⁿ_{i=1} x^{α_i} in 𝔽₂ for some S ⊆ {0,1}ⁿ. This naturally leads to expressions of functions in terms of the basis Ω = {1, ⊕, ∧}. Do the following first in terms of that basis and then adjust the size bounds for the final circuit in converting back to the De Morgan basis {¬, ∨, ∧}.
 - (a) One can compute many functions in a single circuit by designating more than one node as an output node. Prove that for any integer p and every collection of {f₁,..., f_t} functions with f_i : {0,1}^m → {0,1} can be simultaneously computed using size 2^m + [2^m/p]2^p + t · [2^m/p]. Do this by computing all possible monomials and suitably grouping their sums.
 - (b) For a single function f: {0,1}ⁿ → {0,1} represented as a polynomial over F₂, group the monomials based on the common form of the last n √n variables and apply the construction from part (a) with m = √n and suitable values of t and p to the functions

involving the first m variables. Optimize the choice of p to obtain the best size bounds and analyze the resulting complexity as a function of n of the form $2^n/n + \theta_n$ where θ_n is $o(2^n/n)$.