
CSE 531: Computational Complexity I Winter 2016

Lecture 1: Course Overview and Turing machine complexity
January 6, 2016

Lecturer: Paul Beame Scribe: Paul Beame

1 Course Outline

1. Basic properties of Turing Machines (TMs), Circuits & Complexity

2. P, NP, NP-completeness, Cook-Levin Theorem.

3. Hierarchy theorems, Circuit lower bounds.

4. Space complexity: PSPACE, PSPACE-completeness, L, NL, Closure properties

5. Polynomial-time hierarchy

6. #P and counting problems

7. Randomized complexity

8. Circuit lower bounds

9. Interactive proofs & PCP Theorem - Hardness of approximation

10. Communication complexity (?)

11. Strong Exponential Time Hypothesis (SETH). COnnecting the complexity of SAT and polynomial-
time problems.

Logistics The course website is http://www.cs.washington.edu/531. Coursework:

• problem sets (3 or 4, 50% total)

• take-home midterm (15-20%)

• in-class exam (30-35%)

• extra credit homework problems and class participation

1

2 Uniform vs non-uniform models of computation

Uniform models of computation - one device for all input sizes: Turing machines

Non-uniform models of computation - one device for each input size: e.g. Circuits.

We will look at the complexity of functions f : D → R. We will focus on Boolean functions; i.e.,
D = {0, 1}∗ and R = {0, 1}∗ or {0, 1}.

Multitape Turing Machines A (multitape) Turing Machine (TM) M consists of the following:

• finite set of states Q

• a state register

• storage: tapes divided into cells, each of which can store an a symbol from the alphabet Γ.

• heads that scan one cell of each tape.

• input alphabet Σ ⊂ Γ, {�(blank), > (start)} ⊆ Γ \ Σ. All but a finite portion of each tape
contents consist of the blank symbol.

• k read/write work tapes 1-way infinite

• read-only input tape, initially > x1 . . . xn.

• write-only output tape; unnecessary if output is in {0, 1} - use special state qaccept to indicate
output 1 in that case.

• transition function
δ : Q× Γk+1 → Q× Γk+1 × {L, S,R}k+1.

The k + 1 symbols in the domain (being read) are from the input tape and k work tapes; the
k + 1 symbols in the co-domain (being written) are from the k work tapes and the output
tape.

The Turing Machine reads one symbol from each tape based on the position of each head. Each
head moves left, right, or stays where it is depending on the value of the corresponding element of
{L, S,R}. It runs for ever or until it reaches a halting state. We write M(x) for the contents of the
output tape of when x halts.

In the same journal issue in which the original paper where Turing described the TM appear, there
was another paper by Post in which he defined a very simular computational model. (Excerpts
of both papers are linked on the course website.) There are a number of reasons stemming from

2

that original paper that the model has become so closely linked to Turing. Turing gave persuasive
arguments that his model was both natural and sufficient to cover every possible computation. He
showed the existence of a universal Turing machine. Finally, he showed the undecidability of the
halting problem as part of showing that there could be no model that both captures all possible
computations and always halts.

There are many variations in the Turing machine model that are equivalent to each other. For
example, one can easy simulate a 2-way infinite tape cells indexed by consecutive elemments of
Z rather than a single 1-way infinite tape indexed by N. In this simulation we can view the 2-way
infinite tape as folded over itself, with a single leftmost cell representing a cell on the two-way
infinite tape indexed by 0 and upper and lower tracks on the remaining cells representing the
negativly and positivly-indexed cells on the two-way infinite tape, respectively.

Another variation is the random access or index TM, in which, instead of the read heads, there is
a special tape register i that can be written by the TM and causes the value of xi to be copied to a
specific tape location whenever the TM enters of a special query state. Many of the results we will
cover also apply to this model. None of these other deterministic variations will change the # of
steps required to solve problems by more than a polylog(|x|) factor.

Definition 2.1. Let f : {0, 1}∗ → {0, 1}∗ and T : N → N. M computes f in time T (usually
written T (n)) iff ∀n ∈ N and for every input x ∈ {0, 1}n, M runs in at most T (n) steps and halts
with f(x) on its output tape.

Definition 2.2. We define the complexity class of Boolean functions,

DTIME(T(n)) = {f : {0, 1}∗ → {0, 1} | there is a TM M that computes f in time O(T (n))}.

We also interpret DTIME(T(n)) as a set of languages L ⊆ {0, 1}∗ where L = {x | f(x) = 1}.

Definition 2.3. Let f : {0, 1}∗ → {0, 1}∗ and S : N → N. M computes f in space S (usually
written S(n)) iff ∀n ∈ N and for every input x ∈ {0, 1}n, M visits at most S(n) cells on each work
tape and halts with f(x) on its output tape.

Definition 2.4. We define the complexity class of Boolean functions,

DSPACE(S(n)) = {f : {0, 1}∗ → {0, 1} | there is a TM M that computes f in space O(S(n))}.

We also interpret DSPACE(S(n)) as a set of languages L ⊆ {0, 1}∗ where L = {x | f(x) = 1}.

The definitions of time and space on multitape Turing machines and the view that these are the
right ways to capture computational complexity is due to Hartmanis and Stearns, and Hartmanis,
Lewis, and Stearns in the early to mid 1960’s.

Definition 2.5. P =
⋃

k DTIME(nk).

3

We begin by focussing on time complexity. It turns out that there are some time bounds T that do
not correspond to running times of Turing machines. All of the time bounds that we consider are
particularly well-behaved in the following sense.

Definition 2.6. A function T : N → N is time constructible iff T (n) ≥ n and there is some TM
MT such that MT computes the map

x 7→ [T (|x|)]

in time at most T (n) where [N] denotes the binary representation of N .

The functions n, n log n, nc, and 2n are all time-constructible as are all the functions we will
consider.

The Universal Turing Machine A universal Turing Machine is a Turing machine with two input
arguments x ∈ {0, 1}∗ and the binary encooding [M] of a Turing machine M such that U halts iff
M halts on input x and, if it does halt, U(x, [M]) = M(x).

A universal TM may have a smaller tape alphabet, smaller state set, and smaller number of tapes
than the machine M given by [M]. It will represent the elements of Γ in binary as [a] for a ∈ Γ.
It will have to use a tape to store a register holding an encoding [q] of the current state q ∈ Q of
M , and (possibly) to store encodings of the k + 1 symbols currently scanned by the heads of M .
The contents of the k work tapes of M and the positions of their read/write heads are simulated on
a fixed # of tapes of M . The general idea of the simulation is for the simulating machine to match
up the scanned symbols with the transition table δ encoded in [M] and simulate the actions of each
step of M .

Definition 2.7. A Turing machine M is oblivious the location of the read heads of M depend only
on

• the length |x| of the input x, and

• the time step t.

Theorem 2.8. There is an oblivious (universal) Turing machine U such that for all TMs M there
is a C > 0 such that for all x ∈ {0, 1}∗ and all time bounds T (n) ≥ n, ifM halts on input x within
T (|x|) steps then U(x, [M]) = M(x) and U on input (x, [M]) halts in at most CT (|x|) log2 T (|x|)
steps.

Proof sketch. We first describe a simpler version that proves this with time bound CT 2(|x|) and
only uses one work tape. The work tape of U will have 2k ”tracks”. There will be blocks of cells
that represent elements of (Γ × {�,X})k. The X represents the position of the read head on the
corresponding tape. The algorithm proceeds by
(1) sweeping across the occupied region of the work tape left to right to find the symbols currently

4

scanned, and hence the moves to execute using [M],
(2) sweeping right to left to execute those moves for which the read/write head moves left or stays
in place,
(3) sweeping left to right to execute the rightward head moves of M .
(4) moving back to the left end of the work tape.
The number of occupied cells on the work tapes of M is at most T (|x|) so each step costs at most
O(T (|x|) steps; i.e. O(T 2(|x|)) total. The algorithm is essentially oblivious - to do so one needs to
make sure that the length of the region being swept over in simulating time step t does not depend
on the input (using max t, n works).

In order to improve the running time we first describe a simple alternative approach to simulating
the tapes of [M]. In this version, we use k tracks that each use the simulation of a 2-way infinite
tape and align the positions of the work tapes at the 0 position (left end) of the tapes. This way,
there is no need to mark the head positions and no need to record the currently scanned positions
separately. However, whenever a head position on a simulated tape moves to the right, the entire
contents of that tape need to be shifted one simulated cell to the left, and whenever it moves to
the left, the contents must be shifted to the right. It costs O(T (|x|) steps of U to do the shift to
simulate each step of M so again the total running time is O(T 2(|x|)).

To get the improved time bound, the simulating universal machine will need an extra work tape.
The difficulty in improving this simulation is that each shift has to move the entire non-blank por-
tion of the tape ofM . The idea, due to Hennie and Stearns, is to have a more relaxed representation
of each tape by using a dummy character 6 d that is ignored so that 0110, 6 d0 6 d 6 d11 6 d0, and
01 6 d1 6 d 6 d0 6 d all represent the same tape contents. The general idea is to periodically spread out
the contents of the tape to have sufficient room (in the form of 6 d symbols) so that left and right
shifts only need to move a small portion of the tape contents at each step.

More precisely, in addition to the leftmost cell, the two-way infinite simulation of a single tape will
have consecutive zones Z0, Z1, . . ., where Zi is 2i cells wide and represents the contents in Li and
Ri both left and right of the read head. The invariant that will be maintained is that 2i of the 2i+1

values in Li ∪ Ri will contain 6 d. The balance between Li and Ri will change over time, and after
2i simulated steps it is possible that one of them will be packed so that there is no room to shift
further. Every 2i steps the algorithm will spread the contents out so that each of L0, R0, . . . , Li, Ri

is half filled with 6 d symbols. This requires shifting Θ(2i) elements up to Θ(2i) positions. If there
were only a single tape this would cost the product of these two, which would lead only to an
O(T 2(n)) running time. However, with the second tape these shifts can be done in O(2i) time
by copying the contents using the second tape. Since the algorithm runs only for T (n) steps and
T (n) ≥ n, only log2 T (n) zones are required. Therefore the total cost is

log2 T (n)∑
i=0

c2iT (n)

2i
= O(T (n) log T (n)).

The textbook contains more details (but neglects to mention the need for the second tape).

5

In all of the above it will be important for some of the applications that U is not only oblivious but
each head position is also very simple and easy to compute as a function of |x|, |[M]|, and t.

6

	Course Outline
	Uniform vs non-uniform models of computation

