
CSE 531: Complexity theory Winter 2007
Problem Set #5 Instructor: Venkatesan Guruswami
Due in class on Wednesday, March 7, 2007,
or to Prasad by 5pm on Friday, Mar 9.

Instructions: Same as for Problem set 1.

1. (15 points) Define the randomized version of the complexity class NP, denoted PrNP, to
consist of exactly those languages L for which there exists a randomized polynomial time
Turing machine M , and polynomials p1, p2 such that

Completeness: x ∈ L =⇒ ∃w ∈ {0, 1}p1(|x|) s.t. Probr∈{0,1}p2(|x|) [M(x,w) accepts] ≥ 2/3.

Soundness: x /∈ L =⇒ ∀w ∈ {0, 1}p1(|x|), we have Probr∈{0,1}p2(|x|) [M(x,w) accepts] ≤ 1/3.

The one-sided version of PrNP, denoted RNP, is defined similarly, with the probability 2/3 in
the completeness case replaced by 1.

(a) Prove that PrNP = RNP.

(b) Prove that PrNP ⊆ ΣP
2 ∩ΠP

2 .

2. (10 points) Prove the following Karp-Lipton style collapse theorem for PSPACE:

If PSPACE ⊆ P/poly, then PSPACE = ΣP
2 .

(Hint: Consider the IP characterization of PSPACE — what is the complexity of the prover
for the interactive protocol for TQBF? Use this and try to prove the stronger conclusion
PSPACE ⊆ PrNP.)

3. (10 points)

(a) Prove that the class IP remains unchanged if we allow the prover to be probabilistic, i.e.,
the prover’s strategy can be chosen at random from some distribution on functions.

(b) Define IP′ to be the class of languages that have an interactive proof where the verifier
is a deterministic polynomial time Turing machine. What class does IP′ correspond to?

(c) Define SimpleIP to the class of languages that have an interactive protocol where the
prover sends a single message and then the verifier makes an accept/reject decision
based on this message (so there is in fact no interaction). Prove that SimpleIP is unlikely
to equal IP by showing SimpleIP ⊆ ΣP

2 .

4. (15 points) The general task of program verification, i.e., deciding whether or not a given
program solves a certain computational problem, is undecidable. In this exercise, we will
investigate a weaker notion called instance checking where we check correctness of a program
on an input by input basis. Formally, let A be a program solving a decision problem Π
(viewed as a Boolean function). An instance checker for Π is a randomized polynomial time
oracle TM C, such that for any input x, the following hold:

• If A is a correct program for Π (i.e., ∀y, A(y) = Π(y)), then CA (i.e., C with oracle
access to A) accepts A(x) with probability at least 2/3.

1

• For all A, if A(x) 6= Π(x), then CA accepts A(x) with probability at most 1/3.

For problems in BPP, such instance checking is of course trivial. Surprisingly, many problems
not known to be in BPP (and thus not known to be efficiently solvable) admit such checkers.

Prove that the language GNI = {〈G1, G2〉 | G1 and G2 are non-isomorphic graphs} admits an
instance checker.

2

