Instructions: Same as Problem Set 1.

- 1. (10 points) Define $UNIQUESAT = \{ \langle \phi \rangle \mid \phi \text{ has precisely one satisfying assignment} \}$. Prove that $UNIQUESAT \in \mathsf{P}^{\mathsf{SAT}}$.
- 2. (10 points) Prove that an oracle C exists such that $NP^{C} \neq coNP^{C}$.
- 3. (10 points) Prove the following version of the Schwarz-Zippel lemma. Let \mathbb{F} be any field (finite or infinite) and let $Q(x_1, x_2, \ldots, x_m) \in \mathbb{F}[x_1, x_2, \ldots, x_m]$ be a non-zero *m*-variate polynomial over \mathbb{F} of *total* degree *d* (the sum of the degrees of all variables in each monomial is at most *d*). Fix any finite set $S \subseteq \mathbb{F}$. Prove that

$$\mathbf{Prob}[Q(r_1, r_2, \dots, r_m) = 0] \le \frac{d}{|S|}$$

where the probability is taken over r_1, r_2, \ldots, r_m that are chosen independently and uniformly at random from S.

- 4. (10 points) Prove that if NEXPTIME \neq EXPTIME, then P \neq NP. (Problem 9.19, Sipser's 1st edition; Problem 9.14 Sipser's 2nd edition.) Use the function *pad* as described in the hint from Sipser's book.
- 5. (10 points) Prove that evey language in BPP can be decided by a polynomial-size family of Boolean circuits. (Hint: use the amplification lemma to reduce the error on input x to smaller than $2^{-|x|}$ and then show that one can "hardwire" values into the circuit that can replace the randomness used.)
- 6. (10 points) Prove that if the polynomial-time hierarchy $\mathsf{PH} = \mathsf{PSPACE}$ then it has only a finite number of levels, i.e. $\mathsf{PH} = \Sigma_k^{\mathsf{P}}$ for some integer $k \ge 0$.
- 7. (Extra credit) Prove that if $NP \subseteq BPP$, then NP = RP.