Due on Tuesday, November 1, 2005 in class.

Instructions: Same as Problem Set 1.

1. (15 points) In class, we have discussed various undecidability results relating to Turing machines such as Rice's Theorem that deal with the nature of language they recognize. In this problem, we consider questions concerning the actual runtime behavior of Turing machines. Which of the following problems about Turing machines are decidable and which are not? Briefly justify your answers.
(a) To determine, given a Turing machine M, a string w, and integers a and b does M run for more than $a|w|^{2}+b$ steps on input w ?
(b) To determine, given a Turing machine M, and integers a and b does there exist a string w such that M runs for more than $a|w|^{2}+b$ steps on input w ?
(c) To determine, given a Turing machine M does M have a useless state, a state that is never entered on on any input string.
2. (10 points) Define

$$
\text { REGULAR }_{\mathrm{CFG}}=\{\langle G\rangle \mid G \text { is a context-free grammar and } L(G) \text { is regular }\} .
$$

Prove that REGULAR ${ }_{\text {CFG }}$ is undecidable. Ideas similar to those used to prove that ALL $_{\mathrm{CFG}}$ is undecidable may be useful.
3. (10 points) Sipser's text, 1st Edition Problem 5.19 (equivalently 2nd Edition Problem 5.21).
4. (10 points) A language L is said to be \leq_{m}-complete for a class of languages \mathcal{C} if and only if

- $L \in \mathcal{C}$ and
- For all languages $K \in \mathcal{C}, K \leq_{m} L$.

Prove that A_{TM} and $H A L T_{\mathrm{TM}}$ are both \leq_{m}-complete for the class of Turing-recognizable languages.
5. (15 points) We say that a relation $R \subseteq\left(\{0,1\}^{*}\right)^{k}$ is decidable iff the language

$$
L_{R}=\left\{\left\langle x_{1}, x_{2}, \ldots, x_{k}\right\rangle \mid\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in R\right\}
$$

is decidable.
Define Σ_{k}, for $k \geq 0$, to be the class of all languages L for which there is a decidable ($k+1$)-ary relation R such that

$$
L=\left\{x \mid \exists x_{1} \forall x_{2} \cdots Q_{k} x_{k} R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right\},
$$

where the quantifier Q_{k} is \exists if k is odd and \forall if k is even.
Define $\Pi_{k}=\left\{\bar{L} \mid L \in \Sigma_{k}\right.$, i.e. Π_{k} is the set of all complements of languages in Σ_{k}.
Equivalently, Π_{k} is the class of all languages L for which there is a decidable $(k+1)$-ary relation R such that

$$
L=\left\{x \mid \forall x_{1} \exists x_{2} \cdots Q_{k} x_{k} R\left(x_{1}, x_{2}, \ldots, x_{k}, x\right)\right\},
$$

where the quantifier Q_{k} is \forall if k is odd and \exists if k is even.
In this notation, clearly Σ_{0} and Π_{0} equal the set of decidable languages. Moreover, by problem 2 on homework $1, \Sigma_{1}$ consists of precisely the Turing-recognizable languages.
(a) Prove that the language

$$
\mathrm{E}_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a Turing machine and } L(M)=\emptyset\}
$$

is \leq_{m}-complete for Π_{1}.
(b) Prove that the language

$$
\mathrm{ALL}_{\mathrm{TM}}=\left\{\langle M\rangle \mid M \text { is a Turing machine and } L(M)=\{0,1\}^{*}\right\}
$$

is in Π_{2} but not in Σ_{1} or Π_{1}.
(c) Find the smallest k you can such that the language

$$
\mathrm{EQ}_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}, M_{2} \text { are Turing machines and } L\left(M_{1}\right)=L\left(M_{2}\right)\right\}
$$

is in Σ_{k} or Π_{k} and justify your answer.
(d) (Extra credit) Prove that $\mathrm{EQ}_{\mathrm{TM}}$ is \leq_{m}-complete for the class you found in part (c).

