
CSE 531: Computability and Complexity Autumn 2003
Problem Set #4 Instructor: Venkatesan Guruswami
Due on Wednesday, November 26, 2003 in class.

Instructions: Same as Problem Set 1.
There are SEVEN problems, including ONE optional problem.

1. Problem 7.34, Sipser’s book. (3COLOR is NP-complete)

2. In the previous problem set, you showed that the language

2SAT = {〈φ〉 | φ is a satisfiable 2CNF formula}

is in P. You are now required to show that 2SAT is NL-complete.

3. We showed in class that ALLNFA is in PSPACE. In this problem, you are required to prove
that ALLNFA is in fact PSPACE-complete.

4. Problem 1 above asked you to show that the language 3COLOR consisting of 3-colorable
graphs is NP-complete. We now consider the complexity of the language of graphs which can
colored with just two colors. Let us define

2COLOR = {〈G〉 | G is 2-colorable} .

In this problem, you will show that the complexity of 2COLOR is closely related to that of
another fundamental problem: undirected connectivity. Specifically, define

UPATH = {〈G, s, t〉 | G is an undirected graph that has an undirected path from s to t} .

While PATH (on directed graphs) is the canonical NL-complete problem, the exact space
complexity of UPATH is unknown. In particular it is not known whether UPATH is in L, and
neither is it known to NL-complete (though it is considered unlikely that UPATH could be
NL-complete). Since UPATH is such a fundamental problem which does not fit as a complete
problem for the natural complexity classes that we have seen so far, a complexity class is
defined expressly for the purpose of capturing its complexity!

Formally, define SL (stands for “symmetric logspace”) to be class of languages that are
logspace reducible to UPATH. Call a language A to be SL-complete if: (i) A ∈ SL, and
(ii) ∀B ∈ SL, B ≤L A. Note that just by its definition, UPATH is SL-complete!

Prove that 2COLOR , the complement of 2COLOR, is SL-complete. (Do not forget to show
that 2COLOR ∈ SL.)

5. Problem 8.17, Sipser’s book (Give an example of an NL-complete context-free language)

6. This problem concerns branching programs which are described in Section 10.2 of Sipser’s
book. We briefly repeat the definition here. A branching program is a directed acyclic graph
where all nodes are labeled by variables, except for two output nodes labeled 0 or 1. The
nodes that are labeled by variables are called query nodes, each of which has two outgoing

1



edges, onelabeled 0 and the other labeled 1. Both output nodes have no outgoing edges, and
one of the nodes of the branching program is designated the start node. A branching program
determines a Boolean function as follows. Take any assignment to the variables appearing on
its query nodes and, beginning at the start node, follow the path determined by taking the
outgoing edge from each query node according to the value assigned to the indicated variable
(i.e. take the 0-edge is the variable is 0 and 1-node if it is 1). Do this until one of the output
nodes is reached. The label of this output node is the output of the branching program on
that input.

Define a family of branching programs B = (B1, B2, B3, . . . ) to be an infinite list of
branching programs. The n’th member Bn of the list is a branching program that has n

input variables x1, . . . , xn. Say that a family of branching programs decides a language

A ⊆ {0, 1}∗ if for every string a of some length j, a ∈ A iff Bj(a) = 1. Here Bj(a) denotes
the output of the branching program Bj when its j input variables x1, . . . , xj are set to the
values a1, . . . , aj .

Define the size of a branching program to be the number of nodes in it.

(a) Give a diagram representing the n’th branching program for even n in a family deciding
the language {w | w ∈ {0, 1}∗ and w has an odd number of 1’s}. Your branching program
should have size O(n) to receive full credit.

(b) Show that if A is a language in LOGSPACE, then A is decided by a family of branching
programs where the n’th member of the family has at most poly(n) nodes.

7. ∗ (Optional Problem) Define the language

FOREST = {〈G〉 | G is a forest, i.e., an undirected graph with no cycles} .

Prove that FOREST ∈ LOGSPACE.

2


