
CSE 531: Computability and Complexity Autumn 2002
Problem Set #4 Instructor: Venkatesan Guruswami
Due on Tuesday, November 26, 2002 in class.

Instructions: You are permitted (though not exactly encouraged) to collaborate with fellow stu-
dents taking the class in solving problem sets. If you do so, please indicate for each problem the
people you worked with on that problem. Note that you must write down solutions on your own and
collaboration must be restricted to a discussion of solution ideas. Collaboration is not allowed
for the optional problem. Solutions are expected to be your original work and so you must refrain
from looking up solutions or solution ideas from websites or other literature.

1. We showed in class that ALLNFA is in PSPACE. Prove that ALLNFA is PSPACE-complete by
giving a polynomial time mapping reduction from every language in PSPACE to ALLNFA.

2. The product of two n × n Boolean matrices A and B is an n × n Boolean matrix C where
Ci,j =

∨n
k=1(Ai,k ∧Bk,j).

(a) Show that matrix multiplication can be performed in logarithmic space (i.e. give a
logspace transducer that takes as input A,B and outputs their product A ·B).

(b) Prove that computing the p’th power of an n×n Boolean matrix A can be done in space
O(log n log p).

(c) Using the above, give an alternative proof of the inclusion NL ⊆ SPACE(log2 n).

3. Recall the language 3COLOR consisting of 3-colorable graphs which you proved NP-complete
in Problem 4(b) of PS #3. We now consider the complexity of the language of graphs which
can colored with just two colors. Let us define

2COLOR = {〈G〉 | G is 2-colorable} .

In this problem, you will show that the complexity of 2COLOR is closely related to that of
another fundamental problem: undirected connectivity. Specifically, define

UPATH = {〈G, s, t〉 | G is an undirected graph that has an undirected path from s to t} .

While PATH (on directed graphs) is the canonical NL-complete problem, the exact space
complexity of UPATH is unknown. In particular it is not known whether UPATH is in L, and
neither is it known to NL-complete (though it is considered unlikely that UPATH could be
NL-complete). Since UPATH is such a fundamental problem which does not fit as a complete
problem for the natural complexity classes that we have seen so far, a complexity class is
defined expressly for the purpose of capturing its complexity!

Formally, define SL (stands for “symmetric logspace”) to be class of languages that are
logspace reducible to UPATH. Call a language A to be SL-complete if: (i) A ∈ SL, and
(ii) ∀B ∈ SL, B ≤L A. Note that just by its definition, UPATH is SL-complete!

(a) Prove that 2COLOR , the complement of 2COLOR, is SL-complete. (Do not forget to
show that 2COLOR ∈ SL.)

(b) Show that 2COLOR ∈ NL.

1

4. Problem 8.11, Sipser’s book (Properly nested parantheses is in L)

5. Problem 8.17, Sipser’s book (Give an example of an NL-complete context-free language)

6. Following the characterization of NP as problems whose solutions can be verified in P with
the help of a certificate, we can imagine that perhaps NL can be characterized as the class of
logspace verifiable languages defined as follows. Define a language A to be logspace verifiable
if there exists a relation R ⊆ Σ∗ × Σ∗ and an integer k such that

• x ∈ A ⇐⇒ ∃y s.t. 〈x, y〉 ∈ R

• 〈x, y〉 ∈ R =⇒ |y| ≤ |x|k, and

• R ∈ L.

However, this does not (or rather is unlikely to) characterize NL. Prove that, in fact, the class
of logspace verifiable languages is exactly NP.

7. ∗ (Optional Problem) The algorithm for deciding membership in the language ECFG =
{〈G〉|G is a context-free grammar and L(G) = ∅} corresponding to the emptiness problem for
context-free grammars has been quite useful as a subroutine in at least two problems from
earlier problem sets (Problem 5 in PS#1 and Problem 6 in PS#2). It is easy to check this
algorithm for ECFG (from Theorem 4.7 of the book) runs in polynomial time, so in fact
ECFG ∈ P .

(a) “The language ECFG in some sense captures the essence of efficient solvability” — give
a formal basis for this statement by defining a meaningful notion of completeness for the
class P and proving that ECFG is P-complete under this notion.

(b) Recall that we showed that ACFG = {〈G, w〉 | G is a grammar that generates w} is
in P using dynamic programming. Prove that ACFG is P-complete according to your
definition of P-completeness in (a).
(Depending upon your reduction, solving this part before (a) might help.)

2

