CSE 531 - A CFG to generate \(u \# v \) such that
\(u \) does not yield \(v \)

October 19, 2000
Kaustubh Deshmukh

In these notes we define a Context Free Grammar (CFG) for generating strings of the form \(u \# v \), such that \(u \) does not yield \(v \) because something goes wrong\(^1\). This CFG was used in the reduction of \(A_{TM} \) to the Everything Problem for CFGs.

Given a Turing Machine \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r) \), we want to generate all strings of the form \(u \# w \) such that \(u \) does not yield \(v \). For simplicity we make the assumption that \(M \) never tries to move its head of the left end of the tape. Let \(\Delta = \Gamma \cup Q \). All valid configurations are strings in \(\Delta \). Firstly we define a partial function \(F_M : \Delta^4 \rightarrow \Delta \) as defined in class, as follows:

\[
F_M(a, b, c, d) = e
\]

1. if \(a, b, c \in \Gamma \), then \(e = b \)
2. if \(a \in Q \), then
 (a) \(\delta(a, b) = (p, f, R) \Rightarrow e = p \)
 (b) \(\delta(a, b) = (p, f, L) \Rightarrow e = f \)
3. if \(b \in Q \), then
 (a) \(\delta(b, c) = (p, f, R) \Rightarrow e = f \)
 (b) \(\delta(b, c) = (p, f, L) \Rightarrow e = a \)
4. if \(c \in Q \), then
 (a) \(\delta(c, d) = (p, f, R) \Rightarrow e = b \)
 (b) \(\delta(c, d) = (p, f, L) \Rightarrow e = p \)

\(^1\)The “something goes wrong” stands for the fact that a string of the form \(u \# wx \) will not be generated, where \(|u| = |w|\) and \(u \) yields \(w \). Such strings are generated by “lengths wrong” CFG.
This function determines which character will occur in the place of b in the yielded configuration, by looking at a window of four characters. We say that a, b, c, d yields e.

We define the grammar $G_M = (V, \Delta', R, S)$ as follows:
V consists of the non-terminals S, C, F and $B^{(a,b,c,d)} \forall a, b, c, d \in \Delta$.
$\Delta' = \Delta \cup \{\#\}$
S is the start symbol.

The rules are defined as follows:

1. $S \rightarrow B^{(a,b,c,d)} e C \quad \forall a, b, c, d, e \in \Delta$ such that $F(a, b, c, d) \neq e$
2. $S \rightarrow F$
3. $B^{(a,b,c,d)} \rightarrow x B^{(a,b,c,d)} y \quad \forall x, y \in \Delta$
4. $B^{(a,b,c,d)} \rightarrow a b c d C \neq x \quad \forall x \in \Delta$
5. $F \rightarrow b c d C \neq e C \quad \forall b, c, d, e \in \Delta$ such that $F(\sqcup, b, c, d) \neq e$
6. $C \rightarrow e \mid x C \quad \forall x \in \Delta$

The grammar works as follows:
The first rule first introduces an anomaly that cannot occur for a yield to work correctly. That is, if e is the $(n + 1)^{\text{th}}$ symbol in v then rule 1 will ensure that a, b, c, d, which will start at position n in u, do not yield e, as $F(a, b, c, d) \neq e$. Rule 3 inserts $(n - 1)$ characters at the beginning of both u and v. Rule 4 puts the characters a, b, c, d in the n^{th} position in u. The extra x is to ensure that e will occur in the $(n + 1)^{\text{th}}$ position in v, which is the same position in which b occurs in u.

In the above description e could never occur in the first position of v. That is, we could not generate strings where u does not yield v only because the first character of v is wrong. To accommodate this, we have added rules 2 and 5. Rule 5 ensures that b, c, d and e are the initial characters of u and v respectively, and that e is the wrong character as $F(\sqcup, b, c, d)^2 \neq e$.

Hence the grammar G_M generates all strings of the form $u \# v$ where u does not yield w because something goes wrong.

2Any character in Γ could be used as a to capture the effect of F in the case bcd is the initial part of u. This can easily be seen from the definition of F. The blank is used just for convenience.