VECTORS

CSE 528

CSE 528

Example: rewrite the following vector in a coordinate system rotated 45 degrees CCW

vectors live in a vector space

one vector space can be a *subspace* of another vector space

2D vector space

2D vector space as a subspace of a 3D vector space

TIPS AND TRICKS

Always ask:

- Is the quantity I'm working with a scalar? vector? function?
 - If vector: what is dimensionality? what does dimensionality represent?
 what do indices represent? what do elements represent?
 - If function: what is domain of function? what does domain of function represent? what does function argument represent? what do function values represent?

representing an image as a vector

inner product between functions of multiple arguments

 $\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y) g(x, y) dx dy$

 $\int_{t}^{t_2} \int_{x_1}^{x_2} \int_{y_2}^{y_2} f(x, y, t)g(x, y, t)dxdydt$

MATRICES

CSE 528

by corresponding column of B

- eigenvalues and eigenvectors of matrix are *invariant* to change of basis.
 - eigenvalues will be identical
 - eigenvectors will be same vectors, just rewritten in new coordinates
- if A is symmetric (A = A^T), then eigenvalues are real and eigenvectors are orthogonal.
- eigenvalues and eigenvectors often have special meaning:
 - e.g., in PCA related to directions of maximum variance
 - o e.g., in dynamical systems related to system stability

DYNAMICAL SYSTEMS

CSE 528

- "dynamical system" = system that changes in time
- represent with system of differential equations solving DEs is hard -- what can we learn about system without finding explicit solution?

1D	2D		ND
description	description		description
$\dot{x} = f(x)$	$\dot{x}_1 = f_1(x_1, x_2)$		$\dot{x_1} = f_1(x_1, \ldots, x_N)$
note: $\dot{x} \equiv \frac{dx}{dt}$	$\dot{x}_2 = f_2(x_1, x_2)$:
			$\dot{x_N} = f_N(x_1, \ldots, x_N)$
	$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$		$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$
linear system	linear system		linear system
	$\dot{x_1} = a_{11}x_1 + a_{12}x_2$		$\dot{x_1} = a_{11}x_1 + \dots + a_{1N}x_N$
$\dot{x} = ax$	$\dot{x_1} = a_{11}x_1 + a_{12}x_1$ $\dot{x_2} = a_{21}x_1 + a_{22}x_1$	2020	:
		2	$\dot{x_N} = a_{N1}x_1 + \dots + a_{NN}x_N$
	$\dot{\mathbf{x}} = A\mathbf{x}$		$\dot{\mathbf{x}} = A\mathbf{x}$
1D			2D
graphical representation		graphical representation (phase portrait)	
×			<i>x</i> ₂
ear			
	x		x_1
			<i>x</i> ₂
nonlinear			1 1 1
	x		
ř			

FIXED POINT ATTRACTORS

CSE 528

OTHER ATTRACTORS

strange attractors (chaos)

