

Example: rewrite the following vector in a coordinate system rotated 45 degrees CCW

$$
\begin{array}{r}
\mathbf{v}=\binom{1}{4} \quad \mathbf{b}_{1}^{*}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}, \mathbf{b}_{2}^{*}=\binom{-1 / \sqrt{2}}{1 / \sqrt{2}} \quad \mathbf{v}^{*}=\binom{\mathbf{v}^{T} \mathbf{b}_{1}^{*}}{\mathbf{v}^{T} \mathbf{b}_{2}{ }_{2}} \\
\mathbf{v}^{*}=\binom{1 / \sqrt{2}+4 / \sqrt{2}}{-1 / \sqrt{2}+4 / \sqrt{2}}=\binom{5 / \sqrt{2}}{3 / \sqrt{2}} \approx\binom{3.54}{2.12}
\end{array}
$$

vectors live in a vector space

2D vector space
one vector space can be a subspace of another vector space

2D vector space as a subspace of a 3D vector space

TIPS AND TRICKS

Always ask:

- Is the quantity l'm working with a scalar? vector? function?
- If vector: what is dimensionality? what does dimensionality represent? what do indices represent? what do elements represent?
- If function: what is domain of function? what does domain of function represent? what does function argument represent? what do function values represent?
representing an image as a vector

inner product between functions of multiple arguments

$$
\begin{gathered}
\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} f(x, y) g(x, y) d x d y \\
\int_{t_{1}}^{t_{2}} \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} f(x, y, t) g(x, y, t) d x d y d t
\end{gathered}
$$

2×2	$\mathbf{M x N}$
general description	general description
$A=\left(\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right)$	$A=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 N} \\ a_{21} & a_{22} & \ddots & a_{2 N} \\ \vdots & \ddots & \ddots & \vdots \\ a_{M 1} & a_{N 2} & \ldots & a_{M N}\end{array}\right)$ $=\left(\begin{array}{cccc}\uparrow & \uparrow & \uparrow & \uparrow \\ \mathbf{a}_{1}^{c} & \mathbf{a}_{2}^{c} & \ldots & \mathbf{a}_{N}^{c} \\ \downarrow & \downarrow & \downarrow & \downarrow\end{array}\right)=\left(\begin{array}{ccc}\leftarrow & \left(\mathbf{a}_{1}^{r}\right)^{T} & \rightarrow \\ \leftarrow & \left(\mathbf{a}_{2}^{r}\right)^{T} & \rightarrow \\ \leftarrow & \vdots & \rightarrow \\ \leftarrow & \left(\mathbf{a}_{M}^{r}\right)^{T} & \rightarrow\end{array}\right)$

matrix times vector
$A \mathbf{v}=\left(\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right)\binom{2}{1}=$
$\binom{[-1 \times 2]+[2 \times 1]}{[2 \times 2]+[-1 \times 1]}=\binom{0}{3}$

think of a matrix in terms of its action on a vector space
matrix times matrix

$$
\begin{gathered}
A B=\left(\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right)= \\
\binom{[-1 \times 2]+[2 \times 1],[-1 \times 3]+[2 \times-1]}{[2 \times 2]+[-1 \times 1],[2 \times 3]+[-1 \times-1]}= \\
\left(\begin{array}{cc}
0 & -5 \\
3 & 7
\end{array}\right)
\end{gathered}
$$

$$
A B \neq B A
$$

matrix times vector

$$
A \mathbf{v}=\left(\begin{array}{c}
\left(\mathbf{a}_{1}^{r}\right)^{T} \mathbf{v} \\
\left(\mathbf{a}_{2}^{r}\right)^{T} \mathbf{v} \\
\vdots \\
\left(\mathbf{a}_{M}^{r}\right)^{T} \mathbf{v}
\end{array}\right)=v_{1} \mathbf{a}_{1}^{c}+v_{2} \mathbf{a}_{2}^{c}+\cdots+v_{N} \mathbf{a}_{N}^{c}
$$

dot product of each row with \mathbf{v} or weighted sum of columns, weighted by elements of \mathbf{v}
matrix times matrix

$$
\begin{aligned}
& A B=\left(\begin{array}{cccc}
\left(\mathbf{a}_{1}^{r}\right)^{T} \mathbf{b}_{1}^{c} & \left(\mathbf{a}_{1}^{r}\right)^{T} \mathbf{b}_{2}^{c} & \ldots & \left(\mathbf{a}_{1}^{r}\right)^{T} \mathbf{b}_{P}^{c} \\
\left(\mathbf{a}_{2}^{r}\right)^{T} \mathbf{b}_{1}^{c} & \left(\mathbf{a}_{2}^{r}\right)^{T} \mathbf{b}_{2}^{c} & \ldots & \left(\mathbf{a}_{2}^{r}\right)^{T} \mathbf{b}_{P}^{c} \\
\vdots & \ddots & & \\
\left(\mathbf{a}_{M}^{r}\right)^{T} \mathbf{b}_{1}^{c} & \left(\mathbf{a}_{M}^{r}\right)^{T} \mathbf{b}_{2}^{c} & \ldots & \left(\mathbf{a}_{M}^{r}\right)^{T} \mathbf{b}_{P}^{c}
\end{array}\right)= \\
&\left(\begin{array}{cccc}
\uparrow & \uparrow & \ldots & \uparrow \\
A \mathbf{b}_{1}^{c} & A \mathbf{b}_{2}^{c} & \ldots & A \mathbf{b}_{P}^{c} \\
\downarrow & \downarrow & \ldots & \downarrow
\end{array}\right)
\end{aligned}
$$

each column of result is A multiplied by corresponding column of B

2×2		N x N
$A=\left(\begin{array}{cc} -1 & 2 \\ 2 & -1 \end{array}\right)$	v_{1}	$\begin{aligned} & A \mathbf{e}_{1}=\lambda_{1} \mathbf{e}_{1} \\ & A \mathbf{e}_{2}=\lambda_{2} \mathbf{e}_{2} \end{aligned}$
		$\begin{array}{ll} \qquad A \mathbf{e}_{\mathrm{N}}=\lambda_{N} \mathbf{e}_{\mathrm{N}} \\ \text { matrix whose } & A=E \Lambda E^{T} \\ \text { columns } \\ \text { are eigenvectors } & \begin{array}{l} \text { diagonal matrix } \\ \text { whose diagonal } \\ \text { elements are } \\ \text { eigenvalues } \end{array} \end{array}$

$$
\lambda_{1}=-3, \quad \lambda_{2}=1
$$

eigenvectors of matrix A are vectors that change only length or sign, but not direction, when acted upon by A

MATLAB Code:

[E, L] = eig(A)
E is matrix whose columns are eigenvectors
L is matrix whose diagonals are corresponding eigenvalues

Python Code:
E, $L=n p . l i n a l g . e i g(A)$
E is matrix whose columns are
eigenvectors
L is 1-D array whose elements are corresponding eigenvalues

fun facts

eigenvalues and eigenvectors of matrix are invariant to change of basis.

- eigenvalues will be identical
- eigenvectors will be same vectors, just rewritten in new coordinates
- if A is symmetric $\left(A=A^{\top}\right)$, then eigenvalues are real and eigenvectors are orthogonal.
eigenvalues and eigenvectors often have special meaning:
- e.g., in PCA related to directions of maximum variance
- e.g., in dynamical systems related to system stability
- "dynamical system" = system that changes in time
- represent with system of differential equations
- solving DEs is hard -- what can we learn about system without finding explicit solution?

limit cycles

strange attractors (chaos)

