Supplementary Material for Recurrent Networks

Compiled by:
Rajesh P. N. Rao
Computational Neuroscience

Solving the Differential Equation for a Linear Recurrent Network

$$
\tau \frac{d \mathbf{v}}{d t}=-\mathbf{v}+\underbrace{\mathrm{Wu}}_{\mathbf{h}}+\mathrm{Mv}
$$

Using Eigenvectors to Solve for $\mathbf{v}(t)$

$$
\tau \frac{d \mathbf{v}}{d t}=-\mathbf{v}+\mathbf{h}+\mathbf{M} \mathbf{v}
$$

- Suppose $N \times N$ matrix M is symmetric
$\downarrow \mathrm{M}$ has N orthogonal eigenvectors \mathbf{e}_{i} and N eigenvalues λ_{i} which satisfy:
$\mathrm{Me}_{i}=\lambda_{i} \mathbf{e}_{i}$
* Normalize eigenvectors to have length 1
\Rightarrow Divide each by its length
* Then we have a set of orthonormal vectors (a new "basis" or coordinate system) such that:

$$
\mathbf{e}_{i} \cdot \mathbf{e}_{j}=0 \text { for } i \neq j \text { and } 1 \text { otherwise }
$$

Using Eigenvectors to Solve for $\mathbf{v}(t)$

\downarrow We can represent any N -dimensional vector, including our output vector $\mathbf{v}(t)$, using the orthonormal eigenvectors of M :

$$
\mathbf{v}(t)=\sum_{j=1}^{N} c_{j}(t) \mathbf{e}_{j}
$$

- Substituting above in the diff. equation for $\mathbf{v}: \tau \frac{d \mathbf{v}}{d t}=-\mathbf{v}+\mathbf{h}+\mathrm{Mv}$

$$
\tau \frac{d \sum_{j=1}^{N} c_{j_{j}} \mathbf{e}_{j}}{d t}=-\sum_{j=1}^{N} c_{\mathbf{j}_{j}}+\mathbf{h}+\mathrm{M} \sum_{j=1}^{N} c_{j} \mathbf{e}_{j}
$$

$$
\tau \sum_{j=1}^{N} \frac{d c_{j}}{d t} \mathbf{e}_{j}=-\sum_{j=1}^{N} c_{j}\left(\mathbf{e}_{j}-\mathbf{M} \mathbf{e}_{j}\right)+\mathbf{h}
$$

Using eigenvector equation

$$
\tau \sum_{j=1}^{N} \frac{d c_{j}}{d t} \mathbf{e}_{j}=-\sum_{j=1}^{N} c_{j}\left(\mathbf{e}_{j}-\lambda_{j} \mathbf{e}_{j}\right)+\mathbf{h}
$$

$$
\mathrm{Me}_{j}=\lambda_{j} \mathbf{e}_{j}
$$

Using Eigenvectors to Solve for $\mathbf{v}(t)$

\uparrow Taking the dot product of both sides with any \mathbf{e}_{i} :

$$
\begin{aligned}
& \left(\tau \sum_{j=1}^{N} \frac{d c_{j}}{d t} \mathbf{e}_{j}=-\sum_{j=1}^{N} c_{j}\left(\mathbf{e}_{j}-\lambda_{j} \mathbf{e}_{j}\right)+\mathbf{h}\right) \cdot \mathbf{e}_{i} \\
& \tau \frac{d c_{i}}{d t}=-c_{i}\left(1-\lambda_{i}\right)+\mathbf{h} \cdot \mathbf{e}_{i}
\end{aligned}
$$

Using orthonormality of the \mathbf{e}_{i}
\uparrow Solve differential equation for c_{i} (and use it to get $\mathbf{v}(t)!$):

$$
\begin{aligned}
& c_{i}(t)=\frac{\mathbf{h} \cdot \mathbf{e}_{i}}{1-\lambda_{i}}\left(1-\exp \left(\frac{-t\left(1-\lambda_{i}\right)}{\tau}\right)+c_{i}(0) \exp \left(\frac{-t\left(1-\lambda_{i}\right)}{\tau}\right)\right) \\
& \mathbf{v}(t)=\sum_{i=1}^{N} c_{i}(t) \mathbf{e}_{i}
\end{aligned}
$$

Eigenvalues determine Network Stability!

$\mathbf{v}(t)=\sum_{i=1}^{N} c_{i}(t) \mathbf{e}_{i} \quad c_{i}(t)=\frac{\mathbf{h} \cdot \mathbf{e}_{i}}{1-\lambda_{i}}\left(1-\exp \left(\frac{-t\left(1-\lambda_{i}\right)}{\tau}\right)+c_{i}(0) \exp \left(\frac{-t\left(1-\lambda_{i}\right)}{\tau}\right)\right)$

If any $\lambda_{i}>1, \mathbf{v}(t)$ explodes \Rightarrow network is unstable!

If all $\lambda_{i}<1$, network is stable and $\mathbf{v}(t)$ converges to steady state value :
$\mathbf{v}_{s s}=\sum_{i} \frac{\mathbf{h} \cdot \mathbf{e}_{i}}{1-\lambda_{i}} \mathbf{e}_{i}$

Amplification of Inputs in a Recurrent Network

$$
\mathbf{v}_{s s}=\sum_{i} \frac{\mathbf{h} \cdot \mathbf{e}_{i}}{1-\lambda_{i}} \mathbf{e}_{i}
$$

If all $\lambda_{i}<1$ and one $\lambda_{i}\left(\right.$ say $\left.\lambda_{1}\right)$ is close to 1 with others much smaller :

$$
\mathbf{v}_{s s} \approx \frac{\mathbf{h} \cdot \mathbf{e}_{1}}{1-\lambda_{1}} \mathbf{e}_{1} \quad \begin{aligned}
& \text { Amplification of input } \\
& \text { projection by a factor of } \frac{1}{1-\lambda_{i}}
\end{aligned}
$$

Memory in Linear Recurrent Networks

$\tau \frac{d \mathbf{v}}{d t}=-\mathbf{v}+\mathbf{h}+\mathbf{M} \mathbf{v} \quad \mathbf{v}(t)=\sum_{i=1}^{N} c_{i}(t) \mathbf{e}_{i}$
Suppose $\lambda_{1}=1$ and all other $\lambda_{i}<1$. Then, $\tau \frac{d c_{1}}{d t}=\mathbf{h} \cdot \mathbf{e}_{1}$
Solving for c_{1}, we get $c_{1}(t)=c_{1}(0)+\frac{1}{\tau} \int_{0}^{t} \mathbf{h}\left(t^{\prime}\right) \mathbf{e}_{1} d t^{\prime} \tau$
If input \mathbf{h} is turned on and then off, can show that even after $\mathbf{h}=0$:

$$
\begin{aligned}
\mathbf{v}(t) & =\sum_{i} c_{i}(t) \mathbf{e}_{i} \\
& \approx c_{1} \mathbf{e}_{1}=\frac{\mathbf{e}_{1}}{\tau} \int_{0}^{t} \mathbf{h}\left(t^{\prime}\right) \mathbf{e}_{1} d t^{\prime} \quad\left(\text { assuming } c_{1}(0)=0\right)
\end{aligned}
$$

Sustained activity without any input!
Networks keeps a memory of integral of past input

Stability of Nonlinear Recurrent Networks

$$
\tau \frac{d \mathbf{v}}{d t}=-\mathbf{v}+F(\mathbf{h}+\mathbf{M} \mathbf{v})
$$

Stability Analysis of Nonlinear Recurrent Networks

General case : $\frac{d \mathbf{v}}{d t}=\mathbf{f}(\mathbf{v})$
Suppose \mathbf{v}_{∞} is a fixed point (i.e., $\mathbf{f}\left(\mathbf{v}_{\infty}\right)=0$) network near \mathbf{v}_{∞} ?
Near $\mathbf{v}_{\infty}, \mathbf{v}(t)=\mathbf{v}_{\infty}+\boldsymbol{\varepsilon}(t)$. Differentiating both sides wrt $t: \frac{d \mathbf{v}}{d t}=\frac{d \boldsymbol{\varepsilon}}{d t}$.
Taylor expansion near $\mathbf{v}_{\infty}: \mathbf{f}(\mathbf{v}(t)) \approx \mathbf{f}\left(\mathbf{v}_{\infty}\right)+\left.\frac{\partial \mathbf{f}}{\partial \mathbf{v}}\right|_{\mathbf{v}_{\infty}} \boldsymbol{\varepsilon}(t)=\left.\frac{\partial \mathbf{f}}{\partial \mathbf{v}}\right|_{\mathbf{v}_{\infty}} \boldsymbol{\varepsilon}(t)$
i.e. $\frac{d \mathbf{v}}{d t}=\mathbf{f}(\mathbf{v}(t))=\left.\frac{\partial \mathbf{f}}{\partial \mathbf{v}}\right|_{\mathbf{v}_{\infty}} \boldsymbol{\varepsilon}(t)=J \cdot \boldsymbol{\varepsilon}(t) \quad J$ is the stability or "Jacobian" matrix

Also, since $\frac{d \mathbf{v}}{d t}=\frac{d \boldsymbol{\varepsilon}}{d t}$, we have $\frac{d \boldsymbol{\varepsilon}}{d t}=J \cdot \boldsymbol{\varepsilon}(t)$
Assuming J is real with N linearly independent eigenvectors \mathbf{e}_{i}, we can write :
$\boldsymbol{\varepsilon}(t)=\sum_{i} c_{i}(t) \mathbf{e}_{i}$

Stability Analysis of Nonlinear Recurrent Networks

Continued from previous page :
Substituting $\boldsymbol{\varepsilon}(t)=\sum_{i} c_{i}(t) \mathbf{e}_{i}$ into $\frac{d \boldsymbol{\varepsilon}}{d t}=J \cdot \boldsymbol{\varepsilon}(t)$, we find that the coefficients must satisfy :
$\frac{d c_{i}}{d t}=\lambda_{i} c_{i}$. The solution is : $c_{i}(t)=c_{i}(0) \exp \left(\lambda_{i} t\right)$
Therefore, $\boldsymbol{\varepsilon}(t)=\sum_{i} c_{i}(0) \exp \left(\lambda_{i} t\right) \mathbf{e}_{i}$ i.e., evolution of $\mathbf{v}(t)$ near \mathbf{v}_{∞} depends on eigenvalues of J.
Each individual term in the above sum is called a mode.
Eigenvalues of J can be complex, e.g., $\lambda_{k}=a_{k}+i b_{k}$, which means that :
$\exp \left(\lambda_{k} t\right)=\exp \left(a_{k} t\right) \exp \left(i b_{k} t\right)=\exp \left(a_{k} t\right)\left(\cos \left(b_{k} t\right)+i \sin \left(b_{k} t\right)\right)$. This implies :
For complex $\lambda_{k}\left(b_{k} \neq 0\right)$, the mode will oscillate with frequency b_{k}.
If $a_{k}<0$ for all k, the oscillations will be damped exponentially to 0 and the network will be stable near the fixed point \mathbf{v}_{∞}.
If $a_{k}>0$ for any k, the oscillations for that mode will grow exponentially and the network may not be stable (unless the network's nonlinearity curbs the growth as in the following example).

Example: Non-Symmetric Nonlinear Recurrent Network

\uparrow Example: Network of Excitatory (E) and Inhibitory (I) Neurons \Rightarrow Connections can't be symmetric: Why?

$$
\begin{aligned}
& 10 \mathrm{~ms} \longrightarrow \tau_{E} \frac{d v_{E}}{d t}=-v_{E}+\left[\begin{array}{cc}
1.25 & -1
\end{array} M_{E E} v_{E}+M_{E I} v_{I}-\gamma_{E}\right]^{+} \\
& { }_{\nearrow}^{\tau_{I}} \frac{d v_{I}}{d t}=-v_{I}+\left[\stackrel{0}{M}_{I I} v_{I}+M_{I E} v_{E}-\gamma_{I}\right]^{+}
\end{aligned}
$$

Parameter
we will vary to study the network

We want to analyze stability of this network near fixed point \mathbf{v}_{∞} i.e., near the $\left(v_{E}, v_{I}\right)$
which results in $\frac{d v_{E}}{d t}=\frac{d v_{I}}{d t}=0$.

Linear Stability Analysis near Fixed Point

$$
\begin{array}{ll}
\frac{d v_{E}}{d t}=\frac{-v_{E}+\left[M_{E E} v_{E}+M_{E I} v_{I}-\gamma_{E}\right]^{+}}{\tau_{E}} & \begin{array}{l}
\text { Take derivatives of right } \\
\text { hand side with respect to } \\
\frac{d v_{I}}{d t}
\end{array}=\frac{-v_{I}+\left[M_{I I} v_{I}+M_{I E} v_{E}-\gamma_{I}\right]^{+}}{\tau_{I}}
\end{array}
$$

Stability Matrix (aka the "Jacobian" Matrix):

$$
J=\left[\begin{array}{cc}
\frac{\left(M_{E E}-1\right)}{\tau_{E}} & \frac{M_{E I}}{\tau_{E}} \\
\frac{M_{I E}}{\tau_{I}} & \frac{\left(M_{I I}-1\right)}{\tau_{I}}
\end{array}\right]
$$

Compute the Eigenvalues

- Jacobian Matrix:

$$
J=\left[\begin{array}{cc}
\frac{\left(M_{E E}-1\right)}{\tau_{E}} & \frac{M_{E I}}{\tau_{E}} \\
\frac{M_{I E}}{\tau_{I}} & \frac{\left(M_{I I}-1\right)}{\tau_{I}}
\end{array}\right]
$$

\uparrow Its two eigenvalues (obtained by solving $\operatorname{det}(J-\lambda \mathrm{I})=0$):
$\lambda=\frac{1}{2}\left(\frac{\left(M_{E E}-1\right)}{\tau_{E} 10 \mathrm{~ms}}+\frac{\left(M_{I I}-1\right)}{\tau_{I}} \pm \sqrt{\left(\frac{M_{E E}-1}{\tau_{E}}-\frac{M_{I I}-1}{\tau_{I}}\right)^{2}+4 \frac{-1}{M_{E I} M_{I E}^{1}}} \tau_{E} \tau_{I}\right) ~$
Next page plots real and imaginary parts of λ as a function of τ_{I}

Phase Plane and Eigenvalue Analysis

Damped Oscillations in the Network

Choose $\tau_{I}=30 \mathrm{~ms}$ (makes real part of eigenvalues negative)

Unstable Behavior and Limit Cycle

Choose $\tau_{I}=50 \mathrm{~ms}$ (makes real part of eigenvalues positive)

A

B

Oscillations grow initially but curbed by rectification nonlinearity

