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Solving the Differential Equation for a Linear 

Recurrent Network 
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Image Source: Dayan & Abbott textbook  
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Using Eigenvectors to Solve for v(t) 

 
F Suppose N  N matrix M is symmetric 

F M has N orthogonal eigenvectors ei and N eigenvalues i 

which satisfy: 

 

F Normalize eigenvectors to have length 1 
Divide each by its length 

F Then we have a set of orthonormal vectors (a new “basis” or 

coordinate system) such that: 
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Using Eigenvectors to Solve for v(t) 

F We can represent any N-dimensional vector, including our 

output vector v(t), using the orthonormal eigenvectors of M: 

 

F Substituting above in the diff. equation for v:                           
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Using Eigenvectors to Solve for v(t) 

F Taking the dot product of both sides with any ei:                           

 

 

F Solve differential equation for ci  (and use it to get v(t)!): 
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Eigenvalues determine Network Stability! 
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Amplification of Inputs in a Recurrent Network 
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Memory in Linear Recurrent Networks 
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Stability of Nonlinear Recurrent Networks 

Image Source: Dayan & Abbott textbook  
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Stability Analysis of Nonlinear Recurrent Networks 
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Stability Analysis of Nonlinear Recurrent Networks 

   

example). following  thein as

 growth  thecurbsty nonlineari snetwork'  the(unless stable benot may network  the

 andlly exponentiagrow   willmodefor that  nsoscillatio  the,any for  0 If

.point  fixed near the stable be llnetwork wi the

 and 0 lly toexponentia damped be  willnsoscillatio  the, allfor  0 If

 .frequency   withoscillate  willmode  the,)0( complex For 

:implies This )).sin())(cos(exp()exp()exp()exp(

: thatmeans  which, e.g., complex, be can  of sEigenvalue

 mode.a  called is sum above  thein  termindividual Each

. of seigenvalue on depends near  )( of evolution i.e.,  )exp()0()(Therefore,

)exp()0()(  :is solution The .

  :satisfymust  tscoefficien  that thefind  we,)(  into )()( ngSubstituti

:page previous from Continued

ka

ka

bb

tbitbtatibtat

ibaJ

Jttct

tctcc
dt

dc

tJ
dt

d
tct

k

k

kkk

kkkkkk

kkk

i

i

ii

iiiii
i

i

i

i























v

vveε

ε
ε

eε













12 

Example: Non-Symmetric Nonlinear Recurrent Network 

F Example: Network of Excitatory (E) and Inhibitory (I) Neurons 
Connections can’t be symmetric: Why? 
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Linear Stability Analysis near Fixed Point  

 

 

 

Stability Matrix (aka the “Jacobian” Matrix): 
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 Take derivatives of right 

hand side with respect to 

both vE and vI 
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Compute the Eigenvalues 

F Jacobian Matrix: 

 

 

 

F Its two eigenvalues (obtained by solving det(J – I) = 0): 
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Phase Plane and Eigenvalue Analysis 
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Damped Oscillations in the Network  

Choose I = 30 ms (makes real part of eigenvalues negative) 

Stable 

Fixed 

Point 

Image Source: Dayan & Abbott textbook  
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Unstable Behavior and Limit Cycle 

Choose I = 50 ms (makes real part of eigenvalues positive) 

Limit 

cycle 

Image Source: Dayan & Abbott textbook  

Oscillations grow initially but 

curbed by rectification nonlinearity 


