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Solving the Differential Equation for a Linear
Recurrent Network

rd—V:—v+Wu+I\/Iv
dt —

h

2
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Using Eigenvectors to Solve for v(t)

rd—V:—v+h+I\/Iv

dt
+ Suppose N x N matrix M iIs symmetric

+ M has N orthogonal eigenvectors e; and N eigenvalues A;
which satisfy:

Mei — ﬂfuei

+ Normalize eigenvectors to have length 1
< Divide each by its length

+ Then we have a set of orthonormal vectors (a new “basis” or
coordinate system) such that:

e;-e; =0fori= jand1otherwise ’



Using Eigenvectors to Solve for v(t)

+ We can represent any N-dimensional vector, including our
output vector v(t), using the orthonormal eigenvectors of M:

N
v(t) =D c;(t)e,
j=1
+ Substituting above in the diff. equation for v: rd—v =-v+h+Mv

\ dt

dzllcjej N N
= —

— _—chej+h+Mchej

=1 =1

N de B N ( M ) N
T;Eei _—ch ¢j M Using eigenvector equation

i1
N de. N Me. =/1e.

rzlld—t‘ejz—ch(ej—/ljejﬁh -
-

=1 4



Using Eigenvectors to Solve for v(t)

+ Taking the dot product of both sides with any e;:

1 dc,
e, =—) c;le;- +h)-e, - i
(TZ dt JZ; ( ) ) Using orthonormality
?; cei)ehee of the e,

+ Solve differential equation for ¢; (and use It to get v(t)!):
~t(1- 4 —t(1- A,
¢ (t) = .(1_ o t(T 4) t( )

v(t) = Zc Ve,

)

) +¢; (0) exp(




Eigenvalues determine Network Stability!

~t(1- 4) ~t1-4)

T

)

v(t) = Zc Ve, (0 =" (1—exp( ) +¢; (0) exp(

1-4

If any 4 >1, v(t) explodes = network is unstable!

If all 4. <1, network is stable and v(t) converges to steady state value:
h-e

S i 1_%‘ i



Amplification of Inputs in a Recurrent Network

h-e
Vss_zl i |

If all A < land one A; (say 21) IS close to 1 with others much smaller :

h-e Amplification of input
® 1-4 '  projection by a factor of 7=

\'
/1



Memory in Linear Recurrent Networks

dv .
=1
Supposeﬂ1 =1and all other /Ii <1.Then, rﬁ =h-e,

dt

t
Solving for c,, we get ¢, (t) = c,(0) + EJ‘ h(t') e, dt'z
4 0

If input his turned on and then off, can show that even after h =0

v(t) = > c(be,

t
~Ce, = %_f h(t') e,dt’ (assumingc,(0) =0)
0

Sustained activity without any input!
Networks keeps a memory of integral of past input
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Stability of Nonlinear Recurrent Networks

rd—V:—v+ F(h+ Mv)

dt
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Stability Analysis of Nonlinear Recurrent Networks

dv
General case: — =f(v) _
dt We want to know: How stable is the

Suppose v isa fixed point (i.e.,f(v,)=0)  network near v_?

Near v_,v(t) =v_ +¢&(t). Differentiating both sides wrt t : ?j_\t/ = %

S(t) P S(t)

Taylor expansion near v_ : f(v(t)) =f(v ) +

lLe. — —f( (1) =— a(t) J -g(t) J is the stability or “Jacobian” matrix

Also, since dv = d— we have de =J -g(t)

dt dt dt
Assuming J is real with N linearly independent eigenvectors e;, we can write :
g(t) = > _ci(tke

10
(based on Mathematical Appendix A.3 in Dayan & Abbott textbook)



Stability Analysis of Nonlinear Recurrent Networks

Continued from previous page :
Substituting g(t) = Zci (t)e, into % = J - g(t), we find that the coefficients must satisfy :

% = J.c,. The solutionis : ¢, (t) = ¢, (0) exp(At)

Therefore, g(t) = Zci (0)exp(At)e; i.e.,evolutionof v(t) near v depends on eigenvalues of J.

Each individual term in the above sum is called a mode.

Eigenvalues of J can be complex, e.g., 4, = a, +ib,, which means that :

exp(A4,t) =exp(a,t) exp(ib,t) = exp(a,t)(cos(b,t) +isin(b,t)). This implies:

For complex 4, (b, # 0), the mode will oscillate with frequency b, .

If a, < Oforall k, the oscillations will be damped exponentially to 0 and

the network will be stable near the fixed point v .

If a, > Ofor any k, the oscillations for that mode will grow exponentially and

the network may not be stable (unless the network's nonlinearity curbs the growth
as in the following example).

11



Example: Non-Symmetric Nonlinear Recurrent Network

+ Example: Network of Excitatory (E) and Inhibitory (1) Neurons
< Connections can’t be symmetric: Why?

10 ms dv -2 - 0
T E +
Te dt __VE+[MEEVE+MEIVI _7/5]
dVI 0 1 10 n
[ :_V|+[M||V|+M|EVE_7/|]
/ dt
Parameter We want to analyze stability of this network
we will vary to near fixed point v_ i.e., near the (v.,v,)

study the network

which results in d(;/tE = = 0.



Linear Stability Analysis near Fixed Point

dve _ —Ve +[Meve + MV =7 [ Take derivatives of right
dt Te hand side with respect to
dv, _ VY +[M||V| + M Ve —7, ]+ both v and v,
dt T,
Stability Matrix (aka the “Jacobian” Matrix):
(M EE _1) M El
J = Te Te

MIE (Mn _1)

T (7




Compute the Eigenvalues

4+ Jacobian Matrix:
_(M EE _1)

Te
M

I\/IEI

(4=
(M I _1)

2

7

+ Its two eigenvalues (obtained by solving det(J — Al) = 0):

1.25

121 (MEE _1)_|_(M|| _1)i

0

2 TE 10 ms

T

+4

2 -1 1
MEE_l_MII _1] MEIMIE

T TeT,

Next page plots real and imaginary parts of 4 as a function of

14



Phase Plane and Eigenvalue Analysis

A B 1= 30ms 50ms real part of A
20 1 l positive
30— /q—dvI /dt =0 3 | L
264 kA I 4|0 GIO alo 1(|)0
<20 ‘/f 207 real part <, (ms)
i_; o dog /dt=0 negative
104 12
0 I I | I | I 0 . | I | | |
0O 10 20 30 40 50 60 0 20 40 60 80 100
vg (Hz) T; (ms)
dVE _ _ _ T " :
10 =V +[1.25v, —v, +10] Real and imaginary parts
v (a,and b, ) of A (=a, +ib,)
7, d—tl =—v, +[0-v, +v, -10]" as a function of 7
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Damped Oscillations in the Network

Choose 7; = 30 ms (makes real part of eigenvalues negative)

| | | | | |
0 200 400 600 800 1000

f (ms)

Stable
Fixed
Point

U I I I | |
0 200 400 600 800 1000

f (ms)
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Unstable Behavior and Limit Cycle

Choose 7, = 50 ms (makes real part of eigenvalues positive)
A B

AN

Limit
« cycle

200 400 600 800 1000 207
f (ms) 15 -
~40 10
N30
L 20 5
=10 0
0 | | | | | Of————7———7 711
0 200 400 600 800 1000 0 10 20 30 40 50 60
t (ms) U (Hz)

Oscillations grow initially but
curbed by rectification nonlinearity 17
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