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Drawing by Ramón y Cajal
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Today’s Agenda

F Computation in Networks 

of Neurons

Feedforward Networks: 

What can they do?

Recurrent Networks: 

What more can they do?
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Flashback     Firing-Rate-Based Network Model
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F is the “activation function”
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What if there are multiple output neurons?
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General Equation for Modeling Networks
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For feedforward networks, M = matrix of zeros

Output Decay Input     Feedback

Feedforward Recurrent

Image Source: Dayan & Abbott textbook 
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Example: Linear Feedforward Network
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Dynamics:
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Linear Feedforward Network
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What is the network doing?
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Network is performing Linear Filtering for 

Edge Detection
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Example of Edge Detection in a 2D Image

Image from http://www.alexandria.nu/ai/blog/entry.asp?E=51

uInput vOutput 
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Edge detectors in the brain

Examples of 

receptive 

fields in 

primary 

visual cortex

(V1)

Retina

Lateral

Geniculate

Nucleus (LGN)
Primary 

Visual Cortex 

(V1)

+
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The Brain can do Calculus!
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V1 neurons are basically computing derivatives!
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Linear filtering with Wu

is fine but what about 

Wu-sing more than 2 

layers of neurons? 

uv W
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Linear Multilayer Feedforward Network
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Deep (Nonlinear) Feedforward Networks
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How do get the W’s? Answer: Stay tuned…
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Figure adapted from https://www.datarobot.com/blog/a-primer-on-deep-learning/
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Recurrent Neural Networks
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Image Source: Dayan & Abbott textbook 
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What can a Linear Recurrent Network do?
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Want to find out how v(t) behaves for different M

h

Image Source: Dayan & Abbott textbook 
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Eigenvectors to the rescue!

F Idea: Use eigenvectors of M to solve differential equation for v

F Suppose N  N matrix M is symmetric

F M has N orthogonal eigenvectors ei and N eigenvalues i

which satisfy:
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Using Eigenvectors to Solve for Network Output v(t)

F We can represent output vector v(t) using eigenvectors of M:

F Substituting above in the diff. equation for v:

using                and orthonormality of ei, we can solve for ci

(and therefore v(t)!):
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(For full derivation, see Lecture Notes on course website)
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Eigenvalues determine Network Stability!
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Amplification of Inputs in a Recurrent Network
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Example of a Linear Recurrent Network

Recurrent connections M = 

cosine function of relative angle

( - ’)

+

- -Excitation nearby,

Inhibition further away

)'cos()',(  M

Is M symmetric? M(, ’)= M(’, )?

Each output neuron 

codes for an angle 

between -180 to 

+180 degrees
h

v
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Amplification in the Linear Recurrent Network

Noisy Input Output

Preferred angle of neuron

(From section 7.4 in Dayan & Abbott textbook)

 )'cos()',(  M , all eigenvalues = 0 except 1 = 0.9
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Memory in Linear Recurrent Networks
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Sustained activity without any input!

Networks keeps a memory of integral of past input

(For full derivation, see Lecture Notes on course website)
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The Brain can do Calculus (Part II: Integration)*

Input: Bursts of spikes from brain stem oculomotor neurons

Output: Memory of eye position in medial vestibular nucleus

(Image: Dayan & Abbott based on (Seung et al., 2000))*For “Part I: Differentiation,” see earlier slide 
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Nonlinear Recurrent Networks

)M( vhv
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Output Decay Input   Recurrent

Feedback

Input vector h
Output vector v

Example: Rectification nonlinearity: 

F(x) = [x]+ = x if x > 0 and 0 o.w.

26R. Rao, 528: Lecture 9

Nonlinear Recurrent Network performs Amplification

Input Output

(yet stable due to rectification)

)'cos()',( sconnectionrecurrent  before, As  M

Image Source: Dayan & Abbott textbook 

9.1  but  0  seigenvalue All 1  
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Same Nonlinear Network performs Selective “Attention”

Network performs “Winner-Takes-All” input selection

Input Output

Image Source: Dayan & Abbott textbook 
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Gain Modulation in the Nonlinear Network

Inputs Outputs

Adding a constant amount to the input h multiplies the output 

Image Source: Dayan & Abbott textbook 
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Memory in the Nonlinear Network

Local Input +                      Output

Background     

Turn off input                        Output

Network maintains 

a memory of 

previous activity

when input is 

turned off.

Similar to “short-

term memory” or 

“working 

memory” in 

prefrontal cortex 

Memory is maintained by recurrent activity
Image Source: Dayan & Abbott textbook 
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What about Non-Symmetric Recurrent Networks?

F Example: Network of Excitatory (E) and Inhibitory (I) Neurons
Connections can’t be symmetric: Why?
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Stability Analysis 

Stability Matrix (aka the “Jacobian” Matrix):
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 Take derivatives of right 

hand side with respect to 

both vE and vI

• Eigenvalues of J can 

have real and 

imaginary parts

• These eigenvalues 

determine dynamics of 

the nonlinear network 

near a fixed point

1.25
-1 

010 ms

(For all the gory details of this stability analysis, see Lecture Notes on course website)

1 
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Damped Oscillations in the Network 

Choose I = 30 ms (makes real part of eigenvalues negative)

Stable

Fixed

Point

Image Source: Dayan & Abbott textbook 
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Unstable Behavior and Limit Cycle

Choose I = 50 ms (makes real part of eigenvalues positive)

Limit

cycle

Image Source: Dayan & Abbott textbook 
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Oscillatory Activity in Real Networks

Activity in rabbit (or wabbit) 

olfactory bulb during 3 sniffs

Sniff

Sniff

Sniff

(see Chapter 7 in textbook for details)
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F Things to do:
Start reading Chapter 8 in D & A

Homework #3 due Sunday Feb 19

Finalize a final project topic and 

partner(s)

Email Raj, Adrienne and Rich 

your topic and partners, or ask 

to be assigned to a team

That’s all folks! 

Next Class: Guest 

lecture by Prof. 

Eric Shea-Brown


