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CSE/NEUBEH 528

Modeling Synapses and Networks
(Chapter 7)

Image from Wikimedia Commons

Lecture figures are from Dayan & Abbott’s book
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Course Summary (thus far)

F Neural Encoding

What makes a neuron fire? (STA, covariance analysis)

Poisson model of spiking

F Neural Decoding

Spike-train based decoding of stimulus

Stimulus Discrimination based on firing rate

Population decoding (Bayesian estimation)

F Single Neuron Models

RC circuit model of membrane

Integrate-and-fire model

Conductance-based Models
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Today’s Agenda

F Computation in Networks of Neurons

Modeling synaptic inputs

From spiking to firing-rate based networks

Feedforward Networks

Multilayer Networks
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How do neurons 

connect to form 

networks?

Image Source: Wikimedia Commons

Using

synapses!
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Synapses on an actual neuron

Image Credit: Kennedy lab, Caltech. http://www.its.caltech.edu/~mbklab
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What do synapses do?

Increase or decrease postsynaptic membrane potential

Spike

Image Source: Wikimedia Commons
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An Excitatory Synapse

Input spike 
Neurotransmitter 

release (e.g., 
Glutamate) 

Binds to ion channel 
receptors 

Ion channels open 
Na+ influx 

Depolarization due to 
EPSP (excitatory 

postsynaptic potential)

Image Source: Wikimedia Commons

Spike
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An Inhibitory Synapse

Input spike 
Neurotransmitter 

release (e.g., GABA) 
 Binds to ion  

channel receptors 
Ion channels open 

Cl- influx
Hyperpolarization due 

to IPSP (inhibitory 
postsynaptic potential)

Image Source: Wikimedia Commons

Spike
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We want a computational model of the effects 

of a synapse on the membrane potential V 

Synapse

How do we do this?

V
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Flashback         Membrane Model
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Image Source: Dayan & Abbott textbook 
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How do we model the effects of a synapse on 

the membrane potential V ?

Synapse ?
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Hint! Hodgkin-Huxley Model
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EL = -54 mV, EK = -77 mV, ENa = +50 mV

K     Na 

Image Source: Dayan & Abbott textbook 
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Probability of transmitter release given an input spike

Probability of postsynaptic channel opening

(= fraction of channels opened)

Synaptic 

conductance

Modeling Synaptic Inputs

Synapse
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Basic Synapse Model

F Assume Prel = 1

F Model the effect of a single spike input on Ps

F Kinetic Model of postsynaptic channels: 
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What does Ps look like over time given a spike?

Exponential function K(t) gives reasonable fit for some synapses

Others can be fit using “Alpha” function:
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Linear Filter Model of a Synapse
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Synaptic conductance at b: 

b(t) = i δ(t-ti)   (ti are the input spike times, δ = delta function)

Filter for 

synapse b = )(tK

Input Spike 

Train  b(t)

Synapse 

b
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Example: Network of Integrate-and-Fire Neurons

mebbmLm RIEVtgrEV
dt

dV
 ))(()(Each neuron:

Synapses : Alpha function model   

Excitatory synapses (Eb = 0 mV) Inhibitory synapses (Eb = -80 mV)

Synchrony!

mV 54    mV 70  threshL VE

ms 01
peak
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Modeling Networks of Neurons

F Option 1: Use spiking neurons 
Advantages: Model computation and learning based on:

Spike Timing

Spike Correlations/Synchrony between neurons

Disadvantages: Computationally expensive

F Option 2: Use neurons with firing-rate outputs (real 

valued outputs)
Advantages: Greater efficiency, scales well to large networks

Disadvantages: Ignores spike timing issues

F Question: How are these two approaches related?
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Recall: Linear Filter Model of a Synapse
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Synaptic conductance at b: 

b(t) = i δ(t-ti)   (ti are the input spike times, δ = delta function)

Filter for 

synapse b = )(tK

Synapse b

Input Spike Train  b(t)
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From a Single Synapse to Multiple Synapses
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From Spiking to Firing Rate Model

Firing rate ub(t)

Spike train b(t)
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Total 
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Simplifying the Input Current Equation

Suppose synaptic filter K is exponential:

Differentiating                                                        w.r.t. time t,

we get
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General Firing-Rate-Based Network Model
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F is the “activation function”
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Next Class: Networks

F To Do:

Homework 3

Finalize a final project topic and partner(s)

Email Raj, Adrienne and Rich your topic and 

partners, or ask to be assigned to a team


