
E.g. Gaussian tuning curves

Decoding	an	arbitrary	continuous	stimulus

..	what	is	P(ra|s)?	
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Many	neurons	“voting”	for	an	outcome.

Work	through	a	specific	example

• assume	independence
• assume	Poisson	firing

Noise model: Poisson distribution

PT[k] = (lT)k exp(-lT)/k!

Decoding	an	arbitrary	continuous	stimulus
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Assume Poisson:

Assume independent:

Population response of  11 cells with Gaussian tuning curves

Need	to	know	full	P[r|s]
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Apply ML: maximize ln P[r|s] with respect to s

Set derivative to zero, use sum = constant

From Gaussianity of  tuning curves,

If  all s same 

ML
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Apply MAP: maximise ln p[s|r] with respect to s

Set derivative to zero, use sum = constant

From Gaussianity of  tuning curves,

MAP
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Given this data:

Constant prior

Prior with mean -2, variance 1

MAP:
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For stimulus s, have estimated sest

Bias: 

Cramer-Rao bound:

Mean square error:

Variance:

Fisher information

(ML is unbiased: b = b’ = 0)

How	good	is	our	estimate?
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Alternatively:

Quantifies local stimulus discriminability

Fisher	information
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Entropy	and	Shannon	information
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For	a	random	variable	Xwith	distribution	p(x),	the entropy is

H[X]	=		- Sx p(x)	log2p(x)	

Information is	defined	as

I[X]	=		- log2p(x)	

Entropy	and	Shannon	information
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Mutual Information

between X and Y is defined as

MI[X,Y] = H[X] - E [H[X|Y=y]]

          = H[Y] - E [H[Y|X=x]]

y

x



How much information does a single spike convey about the stimulus?

Key idea: the information that a spike gives about the stimulus is the reduction 
in entropy between the distribution of  spike times not knowing the stimulus,
and the distribution of  times knowing the stimulus.

The response to an (arbitrary) stimulus sequence s is r(t).

Without knowing that the stimulus was s, the probability of  observing a spike
in a given bin is proportional to    , the mean rate, and the size of  the bin.

Consider a bin Dt small enough that it can only contain a single spike. Then in
the bin at time t,

Information	in	single	spikes
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Now compute the entropy difference: ,

Assuming              , and using

In terms of  information per spike (divide by        ): 

Note substitution of  a time average for an average over the r ensemble.

ß prior

ß conditional

Information	in	single	spikes
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We can use the information about the stimulus to evaluate our
reduced dimensionality models.

Using information to evaluate neural models
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Mutual information is a measure of  the reduction of  uncertainty about one 
quantity that is achieved by observing another.

Uncertainty is quantified by the entropy of  a probability distribution,
∑ p(x) log2 p(x).

We can compute the information in the spike train directly, without direct 
reference to the stimulus (Brenner et al., Neural Comp., 2000)

This sets an upper bound on the performance of  the model.

Repeat a stimulus of  length T many times and compute the time-varying rate 
r(t), which is the probability of  spiking given the stimulus. 

Evaluating models using information
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Information in timing of  1 spike:

By definition

Evaluating models using information
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Given:

By definition Bayes’ rule

Evaluating models using information
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Given:

By definition Bayes’ rule Dimensionality reduction

Evaluating models using information
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Given:

By definition

So the information in the K-dimensional model is evaluated using 
the distribution of  projections:

Bayes’ rule Dimensionality reduction

Evaluating models using information
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Here we used information to evaluate reduced models of  the Hodgkin-Huxley
neuron.

1D: STA only

2D: two covariance modes

Twist model

Using information to evaluate neural models

19



6

4

2

0

In
fo

rm
at

io
n 

in
 E

-V
ec

to
r (

bi
ts

)

6420
Information in STA (bits)

 Mode 1
 Mode 2

The STA is the single most informative dimension.

Information in 1D
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•The information is related to the eigenvalue of  the corresponding eigenmode

•Negative eigenmodes are much more informative

•Information in STA and leading negative eigenmodes up to 90% of  the total
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Information in 1D
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• We recover significantly more information from a 2-dimensional description
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Information in 2D
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How	can	one	compute	the	entropy	
and	information	of	spike	trains?

Entropy:

Strong	et	al.,	1997;	Panzeri et	al.

Discretize the	spike	train	into	binary	
words	wwith	letter	size	Dt,	length	T.
This	takes	into	account	correlations	between
spikes	on	timescales	TDt.	

Compute	pi =	p(wi),	then	the	naïve	entropy	is

Calculating	information	in	spike	trains
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Information :		difference	between	the	variability	
driven	by	stimuli	and	that	due	to	noise.

Take	a	stimulus	sequence	s and	repeat	many	
times.

For	each	time	in	the	repeated	stimulus,	get	a	
set	of	words	P(w|s(t)).

Average	over	sà average	over	time:

Hnoise =		<	H[P(w|si)]	>i.

Choose	length	of	repeated	sequence	long	enough	
to	sample	the	noise	entropy	adequately.		

Finally,	do	as	a	function	of	word	length	T	and
extrapolate	to	infinite	T.

Reinagel and Reid, ‘00

Calculating	information	in	spike	trains
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Fly H1:
obtain information rate of  
~80 bits/sec or 1-2 bits/spike.

Calculating	information	in	spike	trains
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Another example: temporal coding in the LGN (Reinagel and Reid ‘00)

Calculating	information	in	the	LGN
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Apply the same procedure:
collect word distributions 
for a random, then repeated stimulus.

Calculating	information	in	the	LGN
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Use this to quantify how
precise the code is,
and over what timescales
correlations are important.

Information	in	the	LGN
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