Decoding an arbitrary continuous stimulus
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Decoding an arbitrary continuous stimulus

Many neurons “voting” for an outcome.

. assume independence
. assume Poisson firing

Noise model: Poisson distribution

P;[K] = (AT)k exp(-AT)/K!
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Need to know full P[r|s]
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Assume Poisson: Plra|s] = U “((")ZT_ ))' exp(—f.,(s)T)
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Population response of 11 cells with Gaussian tuning curves


3


ML

Apply ML: maximize In P[r|s] with respect to s

In Plr Tzlahl fals

a=1

Set derivative to zero, use sum = constant
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MAP

Apply MAP: maximise In p[s|r] with respect to s
Inp[s|r] = 111P[r|.s~] + Inpls] — In Pr|

[n pls] TZ ro In(fa(s)) + Inp|s| +
a=1

Set derivative to zero, use sum = constant

N
P L Pl
a;,a f(s*) + p[s]

From Gaussianity of tuning curves,
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(Given this data:

| Constant prior
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How good is our estimate?

For stimulus s, have estimated s,

Bias: best (8) = (Sest — )

2

Variance: 024 (5) = {(Sest — (Sest))?)

Mean square errot:

2 2

< Sest > — < Sest QS_‘E’S’(v:’\) + best (S))2> — O-gst. (") + bgst('—q)'

Cramer-Rao bound: o2, > (1 +be)”

Fisher information
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Fisher information

02 1n plr|s 2 1n plr|s
Ip(s) = <_ OQI | ]> = /drp[r|s] <— 08‘2[ | ]>

Alternatively:

In(s) = <<( ll‘_]).[1|s]> > = /drp[r|.s] (( 111‘-1).[1|“]>
s s

Quantifies local stimulus discriminability
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Entropy and Shannon information
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Entropy and Shannon information

10

For a random variable X with distribution p(x), the entropy is

H[X] = - 2 p(x) log,p(x)

Information is defined as

[[X] = -log,p(x)
Mutual Information between X and Y is defined as
MI[X,Y] = H[X] - E,[H[X]Y=y]]
= H[Y] - EX[H[Y|X=X]]
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Mutual Information

between X and Y is defined as

MI[X,Y] = H[X] - E [H[X|Y=y]]

          = H[Y] - E [H[Y|X=x]]

y
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Information in single spikes
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How much information does a single spike convey about the stimulus?

Key idea: the information that a spike gives about the stimulus is the reduction
in entropy between the distribution of spike times not knowing the stimulus,
and the distribution of times knowing the stimulus.

The response to an (arbitrary) stimulus sequence s is r(t).

Without knowing that the stimulus was s, the probability of observing a spike
in a given bin is proportional to 7 the mean rate, and the size of the bin.

Consider a bin At small enough that it can only contain a single spike. Then in
the bin at time t,

Pir=1) = F7rAt,
P(r=0) = 1-7At,
P(r=1|s) = r(t)At,

Pir=10s) = 1-r(t)At.


11


Information in single spikes
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Now compute the entropy difference: p=7Ats p(t) =r(t)At
I(r,s) = —plogp—(1—p)log(1—p)+ & prior

: T
+% / dt [p(t)logp(t) + (1 — p(t))log(1 — p(t))]. < conditional
O .

Note substitution of a time average for an average over the  ensemble.

Assuming p < ] log(l —p) ~ -p and using % fOT dt p(t) — p

- T r(t
I(r,s) = %/ dt Atr(t) logl(‘ ) + Var(p(t /?In?—l—O(p ).
0

r

In terms of information per spike (divide by 7 At):

I(r,s) = %/ dt ’(Tt) log @
0 ] 7
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Using information to evaluate neural models

We can use the information about the stimulus to evaluate our
reduced dimensionality models.

13
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Evaluating models using information

Mutual information is a measure of the reduction of uncertainty about one
quantity that is achieved by observing another.

Uncertainty is quantified by the entropy of a probability distribution,
2. p(x) log, p(x).

We can compute the information in the spike train directly, without direct
reference to the stimulus (Brenner et al., Neural Comp., 2000)

This sets an upper bound on the performance of the model.

Repeat a stimulus of length T many times and compute the time-varying rate
1(t), which is the probability of spiking given the stimulus.

14
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Evaluating models using information

Information in timing of 1 spike: Lonespike = = / dt -
r(t) P(spike at t|s)
¥ P(spikeatt)

By definition

]”“ ! (f)]

15
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Evaluating models using information

B

. 1 /Tt .
Given: ]m‘n-.\])ilu* = / (t ( ) l()f—';-)
1" Jo -

—
3
i
~
’

P(spike at t|s) P(s|spikeat t)

=

P(spikeatt) P(s)

By definition Bayes’ rule
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Evaluating models using information

Given:

g

P(spike at t|s)

[( e spike

P(spikeat t)

By definition

— L / (h‘l(_f) log, !
1" Jo r -

P(s|spikeat t)

P(s)

_

P(Hl , 59,853, ...I.\])i]{(‘ at f)

P(sq1.89.83....)

Bayes’ rule Dimensionality reduction
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Evaluating models using information

_

P(s1. 89, 83....|spike att)

P(.s'l. S2.53, )

. L 7 r(t :
leen: ]()nu.\])il\'(* E— / ([f l (_) ]( JN !
1" Jo r -
r(t)  P(spikeatt|s) | P(s|spikeatt)
r N P(spikeat t) N P(s)
By definition Bayes’ rule

Dimensionality reduction

So the information in the K-dimensional model is evaluated using

the distribution of projections:

I K

one spike

= /(Il\’.s' P(sy.....s5 |spikeat t) log,

P(s1.....sK|spike at )

P("‘v’l‘ .s']\')
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Using information to evaluate neural models

19

Here we used information to evaluate reduced models of the Hodgkin-Huxley

neuron.

Twist model

2D: two covariance modes

1D: STA only

1
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Information in 1D

The STA 1s the single most informative dimension.
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Information in 1D

*The information is related to the eigenvalue of the corresponding eigenmode
*Negative eigenmodes are much more informative

sInformation in STA and leading negative eigenmodes up to 90% of the total
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Information in 2D

» We recover significantly more information from a 2-dimensional description
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Calculating information in spike trains

23

How can one compute the entropy
and information of spike trains?

filtered signal (Volt)

Entropy:
Discretize the spike train into binary -
words w with letter size At, length T. g [tlofrjofafsjofalofofs]ofofs]ofofa]1s]o]
This takes into account correlations between - )
spikes on timescales TAt. ~ 50-
L
-100 -
g =
b -
g =
Strong et al., 1997; Panzeri et al. 00 01 02 03 o4 05
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Calculating information in spike trains

Information : difference between the variability

driven by stimuli and that due to noise. a £00000010050000000000000000.106 530 . -
10001000010000(00C000G. ..
6950000000000000000
Take a stimulus sequence s and repeat many = T
times. & 5 ool
. . . 0
For each time in the repeated stimulus, get a e TS
t of words P t BEREosREoRREo888
set of words P(w/|s(t)). 8888558885555z
8888885555522882
Average over s = average over time:
_ b
Hnoise = < H[P(Wlsl)] gt 04 0+ DECEEL000100000C0C10000000, ..
«.288222400010000000010000010., .,
0.3} M4 ST RS 4
Choose length of repeated sequence long enough %0'2' - §g§§§§§g 010601000, ;
. . sunee0l 00010CC0GE8G ...
to sample the noise entropy adequately. et . 50205000010000
0

Finally, do as a function of word length T and
extrapolate to infinite T.

Reinagel and Reid, ‘00
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Calculating information in spike trains
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Fly HI:
obtain information rate of
~80 bits/sec or 1-2 bits/spike.

entropy rate (bits/sec)
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C bound (total entropy rate)
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Calculating information in the LGN

Another example: temporal coding in the LGN (Reinagel and Reid ‘00)
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time (msec)
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Calculating information in the LGN

a ... 30000000001000000029900030000000 .. - Apply the same procedure:
.. .0000000010000010000100006(0000000 . - -
....QSHQIOQQ.ZQEt,.i .JWUOOOOOOOOQ...

000000000 100108 . . .
collect word distributions
0oslll o anononaoREEg for a random, then repeated stimulus.

P(w)

0.02¢

’ c
(wlelel g=l=lel {=l=] -
5S8R553225888
S258858858858 (
888555522222 g v
w /"
» 200+
=
b = v
04, e+ DECEE0001000000010000000., a [
.. 2882380001000000001900000
03} «+ < DBULE50001000000U LU e 100 +
...... 1¢GC000000000000010660 —
- ... D0G55800010000000001 0 —
202} ... 511552000010000 1008, . . L
.. 400000100000000100800085 . . .
20020000001000002 1600164
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0.125
0
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Information in the LGN

Use this to quantify how
precise the code is,

and over what timescales
correlations are important.

large bins

~ small bins

0 02 04 06 08 1

1/L (bins ")
EHE = 2 020 s

0 20 40 60 80 100
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