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Computational neuroscience

“Neurotechnology”

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/
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http://www.lce.hut.fi/research/cogntech/neurophysiology

“Neurotechnology”

Recording from the brain
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Recording from the brain

Alan Litke, UCSD

Reading out the neural code
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Reading out the neural code

Kwan, HFSP 2010

Reading out the neural code
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M. Berry

What is the neural code?

Single neurons

Populations

What is the neural code?
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Encoding: how does a stimulus cause a pattern of responses?

• what are the responses and what are their characteristics?
• neural models: 

-- from stimulus to response
-- descriptive mechanistic models

Decoding: what do these responses tell us about the stimulus?

• Implies some kind of decoding algorithm
• How to evaluate how good our algorithm is? 

Encoding and decoding

P(response | stimulus)

P(stimulus | response)

encoding

decoding

•What is response?
•What is stimulus?
•What is the function P?

Encoding and decoding
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Gaussian tuning curve of a cortical (V1) neuron

Nonlinear function:  r = g(s)    

Tuning curves

Cosine tuning curve of a motor cortical neuron

Nonlinear function:  r = g(s)    

Hand reaching direction

Tuning curves
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Sigmoidal tuning curve of a V1 cortical neuron

Nonlinear function:  r = g(s)    

Hand reaching direction

Tuning curves

P(response | stimulus)

P(stimulus | response)

encoding

decoding

Noise and stochasticity

Probabilistic relation 

from r = g(s)..

really

P(n) = f(s)    



1/12/2017

9

Issa N P et al. J Neurophysiol 2008;99:2745-2754

©2008 by American Physiological Society

Cat Bush baby

Map of feature selectivity in primary visual cortex

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)

“Tuning curves”
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What is s?

Quian Quiroga, Reddy, Kreiman, Koch and Fried, Nature (2005)

Tuning curves
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What is s?

Building up complex selectivity

?
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Linear :  r(t) = f s(t)    

Basic coding model: linearity

Basic coding model: linear filtering

Spatial filter:  r =  f(x,y) I(x0-x,y0-y) dx dy

retina Visual cortex
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Linear filter:  r(t) =  s(t-t) f(t) dt

Basic coding model: temporal filtering

…shortcomings? 

Basic coding model: temporal filtering

Linear filter:  r(t) =  s(t-t) f(t) dt
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Next most basic coding model

Linear filter & nonlinearity:  r(t) = g(  s(t-t) f(t) dt)    

s*f1

How to find the components of this model

s*f1
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Reverse correlation: the spike-triggered average

Spike-

conditional

ensemble

The spike-triggered average
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More generally, one can conceive of  the action of  the neuron or 

neural system as selecting a low dimensional subset of  its inputs. 

Start with a very high dimensional description

(eg. an image or a time-varying waveform)

and pick out a small set of  relevant dimensions. 

s(t)

s1 s2 s3

s1

s2

s3

s4 s5 s.. s.. s.. sn S(t) = (S1,S2,S3,…,Sn)

P(response | stimulus)  P(response | s1, s2, .., sn)

Dimensionality reduction

Linear filtering

Linear filtering = convolution = projection

s1

s2

s3

Stimulus feature is a vector in a high-dimensional stimulus space
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Spike-triggered

average

Gaussian prior

stimulus distribution

Spike-conditional 

distribution

Determining linear features from white noise

How to find the components of this model

s*f1
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The input/output function is:

which can be derived from data using Bayes’ rule:

Determining the nonlinear input/output function

Tuning curve:           P(spike|s) = P(s|spike) P(spike) / P(s)

Nonlinear input/output function

Tuning curve:           P(spike|s) = P(s|spike) P(spike) / P(s)

s

P(s|spike) P(s)

s

P(s|spike) P(s)
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Next most basic coding model

Linear filter & nonlinearity:  r(t) = g(  f(t-t) s(t) dt)

s*f1

…shortcomings? 

Less basic coding models

Linear filters & nonlinearity:  r(t) = g(f1*s, f2*s, …, fn*s) 
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Spike-triggered

average

Gaussian prior

stimulus distribution

Spike-conditional 

distribution

covariance

Determining linear features from white noise

The covariance matrix is

Properties:

• The number of  eigenvalues significantly different from zero 

is the number of  relevant stimulus features

• The corresponding eigenvectors are the relevant features 

(or span the relevant subspace)

Stimulus prior

Bialek et al., 1988; Brenner et al., 2000; Bialek and de Ruyter, 2005 

Identifying multiple features

Spike-triggered stimulus 

correlation

Spike-triggered

average
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Let’s develop some intuition for how this works: a filter-and-fire 

threshold-crossing model with AHP

Keat, Reinagel, Reid and Meister, Predicting every spike. Neuron (2001)

• Spiking is controlled by a single filter, f(t)

• Spikes happen generally on an upward threshold crossing of  

the filtered stimulus

 expect 2 relevant features, the filter f(t) and its time derivative f’(t)

A toy example: a filter-and-fire model
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Covariance analysis of a filter-and-fire model
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Example: rat somatosensory (barrel) cortex 
Rasmus Petersen and Mathew Diamond, SISSA
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Record from single units in barrel cortex

Let’s try it

Spike-triggered average:
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White noise analysis in barrel cortex
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Is the neuron simply not very responsive to a white noise stimulus?

White noise analysis in barrel cortex 

Prior Spike-

triggered

Difference

Covariance matrices from barrel cortical neurons
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Eigenspectrum from barrel cortical neurons
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Input/output relations from barrel cortical neurons
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How about the other modes?

Next pair with +ve eigenvalues Pair with -ve eigenvalues

Less significant eigenmodes from barrel cortical neurons
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Input/output relations for negative pair

Negative eigenmode pair

• When the tuning curve over your variable is interesting.

• How to quantify interesting?

When have you done a good job?
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Tuning curve:           P(spike|s) = P(s|spike) P(spike) / P(s)

Goodness measure:    DKL(P(s|spike) | P(s))

Tuning curve:           P(spike|s) = P(s|spike) P(spike) / P(s)

s

Boring: spikes unrelated to stimulus 

P(s|spike) P(s)

s

Interesting: spikes are selective

P(s|spike) P(s)

When have you done a good job?

Choose filter in order to maximize DKL between 
spike-conditional and prior distributions

Sharpee, Rust and Bialek, Neural Computation, 2004

Maximally informative dimensions
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Choose filter in order to maximize DKL between 
spike-conditional and prior distributions

Equivalent to maximizing mutual information between 
stimulus and spike

Sharpee, Rust and Bialek, Neural Computation, 2004

Does not depend 
on white noise inputs

Likely to be most appropriate
for deriving models from
natural stimuli 

Maximally informative dimensions

1. Single, best filter determined by the first moment

2. A family of filters derived using the second moment

3. Use the entire distribution: information theoretic methods

Removes requirement for Gaussian stimuli

Finding relevant features
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Linear filters & nonlinearity:  r(t) = g(f1*s, f2*s, …, fn*s) 

…shortcomings? 

Less basic coding models

GLM:  r(t) = g(f1*s + f2*r) 

Pillow et al., Nature 2008; Truccolo, .., Brown, J. Neurophysiol. 2005 

Less basic coding models
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GLM:  r(t) = g(f*s + h*r) 

…shortcomings? 

Less basic coding models

GLM:  r(t) = g(f1*s + h1*r1 + h2*r2 +…) 

…shortcomings? 

Less basic coding models


