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Lecture 13:

Learning & %

Course Review |2 Sewnm=o? §
(Chapter 9)

Animation: Tom Creed, SJU

Early Results: Pavlov and his Dog

+ Classical (Pavlovian)
conditioning experiments

+ Training: Bell >Food
+ After: Bell > Salivate
+ Conditioned stimulus t‘\' h

(bell) predicts future )

reward (food)

Image: Wikimedia Commons; Animation: Tom Creed, SJU




Predicting Delayed Rewards

+ How do we predict rewards delivered some time after a
stimulus is presented?

+ Given: Many trials, each of length T time steps

+ Time within a trial: 0 <t < T with stimulus u(t) and reward
r(t) at each time step t (Note: r(t) can be zero for some t)

+ We would like a neuron whose output v(t) predicts the
expected total future reward starting from time t

v(t) ~ <Ti r(t+ r)>

=0

Learning to Predict Future Rewards

+ Use a set of synaptic weights w(t) and predict
based on all past stimuli u(t):
t

v(t) = > w(r)u(t-7) W) N'(.t\wm

v(t)

7=0 . N ) € ) ) e
(Linear filter!) WO u(t-1) ()

+ Learn weights w(z) that minimize error:

< i (Can we minimize this using
r¢t+7z)—v(t
(; (tr)=v( )j gradient descent and delta rule?)

‘ Yes, BUT future rewards are not yet available! \fm
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Temporal Difference (TD) Learning

+ Key ldea: Rewrite error function to get rid of future terms:

(Er(m)—v(t)j =[r(t)+§lr<t+1+f)‘v“)j

=0 7=0

~ (r(t) +v(t+1) —v(t))2 Minimize this using
gradient descent!
+ Temporal Difference (TD) Learning:

)

A

AW(z) =g [r(t) +v(t+1) —v(D)]u(t—7)
%/—/

Expected future reward  Prediction

Predicting Future Rewards: TD Learning

Stimulus at t = 100 and reward at t = 200

before after
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Prediction error & for each time step t t

(over many trials)
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Image Source: Dayan & Abbott textbook




Possible Reward Prediction Error Signal in the
Primate Brain

Dopaminergic cells in Ventral Tegmental Area (VTA)

Reward Prediction error 52 [r(t) +v(t+1) —v(t)]

e | €arly I ‘ Before Training

late o
mmm After Training
0 ,(s) 0.8
stimulus. J/ rewardJ \

No error
[0-+v(t) - v(t-1)] V() = r(t) +v(t+1)

[F(t) + v(t +1) — V()] = 0
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Image Source: Dayan & Abbott textbook

More Evidence for Prediction Error Signals

Dopaminergic cells in VTA after Training

i reward

no reward
-1 0 t(s) 1 '\ 2
Negative error Reward expected

rit)=0,v(t+1) =0 / but not delivered
[r(t)+v(t+1)—v(t)] = —v(t)
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Image Source: Dayan & Abbott textbook




Reinforcement Learning: Acting to Maximize Rewards

Agent m

State Reward Action
U; It a
Environment
9
The Problem
Learn a state-to-action
State Agent mapping or “policy”:
u
: Action z(u)=a
Reward & which maximizes the
g expected total future

Environment

reward:

<T§: r(t+ r)>

7=0
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Example: Rat in a barn

5 0 States = locations A,
o @ ore
0 | Actions= L (go left)
n

A or R (go right)
¢ If the rat chooses L or
R at random (random
enter

“policy”), what is the

m expected reward (or
“value™) v for each
state?
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Image Source: Dayan & Abbott textbook

Policy Evaluation

E‘ 0] For random policy:
\g} B| Q‘C V(B)=%~O+%-5=2.5
A

1 1

v(C)==-2+>-0=1
C)=5-2+5

1\ v(A) Z%-V(B)+%-V(C) =1.75
enter
Let value of state u Can learn value of states
v(u) = weight w(u) using TD learning:

w(u) <~ w(u)+e[r(u) +v(u')—-v(u)]

(Location, action) = new location i.e., (u,a) ® u’ 1,




TD Learning of Values for Random Policy

5

w(A) w(B) w(C)

w 2.5 A =

1.75F

A

0p 5 30 0 5 30 0 5 30

trial trial trial
(For all three,

£=0.5)

Once | know the values, I can pick the action
that leads to the higher valued state!
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Image Source: Dayan & Abbott textbook

Selecting Actions based on Values

25 5 1 0 Values act as
B 2C surrogate immediate
\m | rewards = Locally
<« A optimal choice leads
| | to globally optimal
'F policy for “Markov”
environments
enter (Related to Dynamic

Programming)
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Putting it all together:
Actor-Critic Learning

+ Two separate components: Actor (selects action and
maintains policy) and Critic (maintains value of each state)

1. Critic Learning (“Policy Evaluation™):
Value of state u = v(u) = w(u)
w(u) <~ w(u)+e[r(u)+v(u')—v(u)] (sameasTD rule)

2. Actor Learning (‘“Policy Improvement™):

P(a;u) = _OP(R, () Probabilistically select an
> e (A, () action a at state u
b

For all actions a’:

Qu (U) <= Q. (u) +e[r(u) +v(u') —v(u)](6, — P(a’;u))
3. Repeatland?
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Actor-Critic Learning in our Barn Example

T 5

A
W

Probability of going Left at each location

—

=
£0-5 u=A u=D0B u==C_C
Y

0 50 100 0 50 100 0 50 100
trial trial trial
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Image Source: Dayan & Abbott textbook




Possible Implementation of the Actor-Critic
Model in the Basal Ganglia

Cortex — State Estimate

D S T e i
ESTN+——+Striatum Hidden Layer <—| |

DA
| vale— T° |
—>GPe+ SNc . alue 7 oror

Actor Critic

Thalamus
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(See Supplementary Materials for references)

Reinforcement learning has been applied to
many real-world problems!

Example:
Google’s AlphaGo beats human champion in Go,

Autonomous Helicopter Flight
(learned from human demonstrations)

(Videos and papers at: ) v



http://heli.stanford.edu/

Course Summary

® Where have we been?
® Course Highlights

® Where do we go from here?
® Challenges and Open Problems

® Further Reading
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What is the neural code?

What is the nature of the code?

Representing the spiking output:

single cells vs populations ° : T
rates vs spike times vs intervals
What features of the stimulus does the neural system represent?

Cell U
Cell T
Cell §
CellR
Cell Q
Cell P
Cell O
Cell N
Cell M
Cell L
Cell K
Cell J
Cell 1

| CellH

Cell G
Cell F

i| CellE

Cell D
Cell C
Cell B
Cell A
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Encoding and decoding neural information

Encoding: building functional models of neurons/neural systems
and predicting the spiking output given the stimulus

Decoding: what can we say about the stimulus given what we
observe from the neuron or neural population?
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Biophysical Models of Neurons

channel

« Voltage dependent

« transmitter dependent (synaptic)
» Ca dependent

current (pA)
o A ©
L1
i i
. 4
| SE—
i
gr
§ —

channel
closed

. channel

open
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The neural equivalent circuit

le
le ~ %
AT T
—(| —> SSICm 8LWg Vg -
EL = E_E E

Ohm’s law: V =IR and Kirchhoff’s law

dV
-CL,— |9 SV — B 1,

= Z g =
Capacitive lonic currents  Externally
current applied current
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Simplified models: integrate-and-fire

le
le
1
—>

Integrate-and-

<

8L Fire Model
L
dv °
z-m_:_(\/_EL)_|_IeRm %
dt 5 40
) 60
IfvV> Vthreshold 2 Splke @ 4
Then reset: V =V, 3o
0 100 200
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Modeling Networks of Neurons

output v

W

input 1

r?j—ll:—v+ F(Wu+ Mv)

Output  Decay Input  Feedback
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Unsupervised Learning

® For linear neuronv =w'u=u'w
* Basic Hebb Rule: 0w
T,——=uv
dt
[ ] H .
Average effect over many inputs: Hebb rule performs principal

dw component analysis (PCA)
TW E = <UV> = QW :_ - 2 MZ’ZUQ

® Qs the input correlation matrix:

Q=(u}
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The Connection to Statistics

Unsupervised learning = learning the hidden causes of input data

Causes v p[v|u;G] . G=(w,0)
A 1 A
(posterior) Iy Causes of
clustered
Generative Recognition data
model model
Use EM
algorithm for
learning

v

Data u p[u|v;G]
(data likelihood)

28




Generative Models

Droning lecture  Lack of sleep ~ Mathematical

\ / derivations
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Supervised Learning

Backpropagation for Multilayered Networks
v = g(zwijg(zwjkulin))
j k

Goal: Find W and w that minimize errors:

1 m m
X" E(Wij’ij):EZ(di -v")?

g Desired output
Wik . .
: Gradient descent learning rules:

Wij —>Wij - oE
ij
ox :
Wy W, oE —w, _giEm_il (Chain rule)
OWj OXj' OWy

J

(Delta rule)
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Reinforcement Learning

® Learning to predict rewards:
wW—>W+e(r—vu

® Learning to predict delayed ‘
rewal‘dS (TD |eaming): (http://émpIdye:hcsﬂk.):;u-.:du/tcreedlpblpdoganim.htlml)

wW(z) > W(z)+e[rt)+v(t+1) —v(t)]u(t—7)

¢ Actor-Critic Learning: 25 |8 1 1p
¢ Critic learns value of each BI%C
state using TD learning 0

* Actor learns best actions ‘_IA‘
based on value of next state )P
(using the TD error)

enter
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The Future: Challenges and Open Problems

® How do neurons encode information?
® Topics: Synchrony, Spike-timing based learning, Dynamic
synapses
® Does a neuron’s structure confer computational
advantages?

® Topics: Role of channel dynamics, dendrites, plasticity in
channels and their density

¢ How do networks implement computational principles
such as efficient coding and Bayesian inference?

® How do networks learn “optimal” representations of their
environment and engage in purposeful behavior?
® Topics: Unsupervised/reinforcement/imitation learning
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Further Reading (for Spring and beyond)

Spikes: Exploring the Neural Code, F. Rieke
et al., MIT Press, 1997

The Biophysics of Computation, C. Koch,
Oxford University Press, 1999

Large-Scale Neuronal Theories of the Brain,
C. Koch and J. L. Davis, MIT Press, 1994

Probabilistic Models of the Brain, R. Rao et
al., MIT Press, 2002

Bayesian Brain, K. Doya et al., MIT Press,
2007

Reinforcement Learning: An Introduction, R.
Sutton and A. Barto, MIT Press, 1998
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Next two classes: Project presentations!

Keep your presentation short: ~7-8 slides, 8 + 3 mins
mins/group (with questions)
< Introduction, Background, Methods, Results, Conclusion

Slides:
® Bring your slides on a USB stick to use the class
laptop (Windows machine)
OR
¢ Bring your own laptop (esp if you have videos etc.)

Projects reports (10-15 pages total) due March 12 (by
email to both Adrienne, Rich, and Raj before midnight)
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Have a
great
weekend!
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