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Early Results: Pavlov and his Dog

F Classical (Pavlovian) 

conditioning experiments 

F Training: Bell Food

F After: Bell  Salivate

F Conditioned stimulus 

(bell) predicts future 

reward (food)

Image: Wikimedia Commons; Animation: Tom Creed, SJU
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Predicting Delayed Rewards

F How do we predict rewards delivered some time after a 

stimulus is presented?

F Given: Many trials, each of length T time steps

F Time within a trial: 0  t  T with stimulus u(t) and reward 

r(t) at each time step t (Note: r(t) can be zero for some t)

F We would like a neuron whose output v(t) predicts the 

expected total future reward starting from time t
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Learning to Predict Future Rewards

F Use a set of synaptic weights w(t) and predict 

based on all past stimuli u(t):

F Learn weights w() that minimize error:
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Yes, BUT future rewards are not yet available!

(Can we minimize this using 

gradient descent and delta rule?)

)(tv

)(tu )1( tu )0(u

)0(w )(tw )(Tw

(Linear filter!)



5

Temporal Difference (TD) Learning

F Key Idea: Rewrite error function to get rid of future terms:

F Temporal Difference (TD) Learning:
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Expected future reward Prediction



Minimize this using 

gradient descent!
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Predicting Future Rewards: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error  for each time step

(over many trials)

Image Source: Dayan & Abbott textbook
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Possible Reward Prediction Error Signal in the 

Primate Brain

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error δ?

No error
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Image Source: Dayan & Abbott textbook
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More Evidence for Prediction Error Signals

Dopaminergic cells in VTA after Training

Negative error
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Reward expected 

but not delivered

Image Source: Dayan & Abbott textbook
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Reinforcement Learning: Acting to Maximize Rewards

Agent

Environment

State

ut

Reward

rt

Action

at
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The Problem

Agent

Environment

State
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Learn a state-to-action 

mapping or “policy”:

which maximizes the 

expected total future 

reward: 
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Example: Rat in a barn

States = locations A, 

B, or C

Actions= L (go left) 

or R (go right)

If the rat chooses L or 

R at random (random 

“policy”), what is the 

expected reward (or 

“value”) v for each 

state?

Image Source: Dayan & Abbott textbook
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Policy Evaluation

For random policy:

Can learn value of states 

using TD learning:
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Let value of state u

v(u) = weight w(u)

(Location, action)  new location  i.e., (u,a)  u’
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TD Learning of Values for Random Policy

1.75
2.5

1

Once I know the values, I can pick the action 

that leads to the higher valued state!

(For all three, 

 = 0.5)

Image Source: Dayan & Abbott textbook
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Selecting Actions based on Values

2.5 1 Values act as 

surrogate immediate 

rewards  Locally 

optimal choice leads 

to globally optimal 

policy for “Markov” 

environments

(Related to Dynamic 

Programming)
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Putting it all together:

Actor-Critic Learning

F Two separate components: Actor (selects action and 
maintains policy) and Critic (maintains value of each state)

1.   Critic Learning (“Policy Evaluation”): 
Value of state u = v(u) = w(u)

2.   Actor Learning (“Policy Improvement”):

3. Repeat 1 and 2
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 Probabilistically select an 

action a at state u

(same as TD rule)

For all actions a’:
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Actor-Critic Learning in our Barn Example

Probability of going Left at each location

Image Source: Dayan & Abbott textbook
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Possible Implementation of the Actor-Critic 

Model in the Basal Ganglia

Cortex

Striatum

GPi/SNr

Thalamus

STN

GPe SNc

DA

State Estimate

Hidden Layer

TD 

error

Action

Value

Actor Critic

(See Supplementary Materials for references)
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Reinforcement learning has been applied to 

many real-world problems! 

Example: 

Google’s AlphaGo beats human champion in Go, 

Autonomous Helicopter Flight  

(learned from human demonstrations)

(Videos and papers at: http://heli.stanford.edu/) 

http://heli.stanford.edu/
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Course Summary 

• Where have we been?
• Course Highlights

• Where do we go from here?
• Challenges and Open Problems

• Further Reading
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What is the neural code?

What is the nature of the code?

Representing the spiking output: 

single cells vs populations

rates vs spike times vs intervals

What features of the stimulus does the neural system represent?
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Encoding and decoding neural information

Encoding: building functional models of neurons/neural systems 

and predicting the spiking output given the stimulus

Decoding: what can we say about the stimulus given what we

observe from the neuron or neural population?
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Information 

maximization

as a design principle 

of the nervous 

system
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Biophysical Models of Neurons

• Voltage dependent

• transmitter dependent (synaptic)

• Ca dependent
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-

The neural equivalent circuit

Ohm’s law: and Kirchhoff’s law 

Capacitive 

current
Ionic currents Externally 

applied current
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Simplified models: integrate-and-fire
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If V > Vthreshold  Spike

Then reset: V = Vreset

Integrate-and-

Fire Model
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Modeling Networks of Neurons
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Unsupervised Learning

• For linear neuron:

• Basic Hebb Rule: 

• Average effect over many inputs:

• Q is the input correlation matrix:
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Hebb rule performs principal 

component analysis (PCA)
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The Connection to Statistics
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Data u

Generative 

model

Recognition 

model

(data likelihood)

(posterior)

Unsupervised learning = learning the hidden causes of input data

G = (v, v)

Causes of  

clustered 

data

“Causes” 

of natural 

images

Use EM 

algorithm for 

learning
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Generative Models

Droning lecture
Mathematical 

derivations
Lack of sleep

30

Supervised Learning
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Goal: Find W and w that minimize errors:

Backpropagation for Multilayered Networks
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Gradient descent learning rules:

Desired output

(Delta rule)

(Chain rule)
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Reinforcement Learning

• Learning to predict rewards:

• Learning to predict delayed 

rewards (TD learning):

• Actor-Critic Learning:
• Critic learns value of each 

state using TD learning

• Actor learns best actions 

based on value of next state 

(using the TD error)

(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)
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The Future: Challenges and Open Problems

• How do neurons encode information?

• Topics: Synchrony, Spike-timing based learning, Dynamic 

synapses

• Does a neuron’s structure confer computational 

advantages?

• Topics: Role of channel dynamics, dendrites, plasticity in 

channels and their density

• How do networks implement computational principles

such as efficient coding and Bayesian inference?

• How do networks learn “optimal” representations of their 

environment and engage in purposeful behavior?

• Topics: Unsupervised/reinforcement/imitation learning
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Further Reading (for Spring and beyond)

• Spikes: Exploring the Neural Code, F. Rieke
et al., MIT Press, 1997 

• The Biophysics of Computation, C. Koch, 
Oxford University Press, 1999

• Large-Scale Neuronal Theories of the Brain, 
C. Koch and J. L. Davis, MIT Press, 1994

• Probabilistic Models of the Brain, R. Rao et 
al., MIT Press, 2002

• Bayesian Brain, K. Doya et al., MIT Press, 
2007

• Reinforcement Learning: An Introduction, R. 
Sutton  and A. Barto, MIT Press, 1998
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Next two classes: Project presentations!

• Keep your presentation short: ~7-8 slides, 8 + 3 mins 
mins/group (with questions)

Introduction, Background, Methods, Results, Conclusion

• Slides:
• Bring your slides on a USB stick to use the class 

laptop (Windows machine)
OR
• Bring your own laptop (esp if you have videos etc.)

• Projects reports (10-15 pages total) due March 12 (by 
email to both Adrienne, Rich, and Raj before midnight)
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Have a 

great 

weekend!


