

Perceptron Learning Rule

Given input **u**, output $v = \Theta(\sum_{i} w_{i}u_{i} - \mu)$, and desired output v^{d} : Adjust w_{i} and μ according to <u>output error</u> $(v^{d} - v)$: $\Delta w_{i} = \varepsilon(v^{d} - v)u_{i}$ For positive input $(u_{i} = +1)$: Increases weight if error is positive Decreases weight if error is negative $(opposite for u_{i} = -1)$ $\Delta \mu = -\varepsilon(v^{d} - v)$ $+1 \quad -1$ Decreases threshold if error is positive Increases threshold if error is negative

Image Source: Wikimedia Commons

