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Lecture 12: 
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Last Time: A Linear Model for Natural Images
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G = matrix whose columns are gi

v = vector whose elements are vi

? ? ?

(Note: M can be larger than N)
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Defining the Generative Model: Prior
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For any input, we want only a few 

causes vi to be active

• vi = 0 most of the time but 

high for some inputs

• Suggests sparse distribution 

for p[vi]: peak at 0 but with 

heavy tail (also called super-

Gaussian distribution)
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Assuming causes vi are independent:
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Defining the Generative Model: Likelihood
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Assume noise is Gaussian white noise:

Linear model:

CGGp 
2

2

1
];|[log vuvu
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Find v and G that maximize

log of posterior probability
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Recurrent Network for Sparse Coding
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Result: Sparse Coding of Natural Images

Each square is a column 

gi of G (obtained by 

collapsing rows of the 

square into a vector) 

The gi look like local 

edge or bar features 

similar to receptive 

fields in primary 

visual cortex (V1)
(Olshausen & Field, 1996)
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Sparse Coding is a special case of

Predictive Coding

For more details, see: (Rao, Vision Research, 1999; Rao & Ballard, Nature Neurosci., 1999)
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(Rao & Ballard, Nature Neurosci., 1999)

Predictive Coding Model of 

the Visual Cortex

(Gilbert & Li, 2013)

LGN V1 V2Retina
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From Unsupervised to Supervised Learning:

Neurons as Classifiers
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The Classification Problem

How do we build a classifier to distinguish 

between faces and other objects?

Image Source: Wikimedia Commons
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The Classification Problem

labeled +1 (faces)

labeled -1 (other)
Faces

Other objects

Idea: Find a separating hyperplane (line in this case)

Can neurons do that?

Pixel 1

Pixel 2
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The Idealized Neuron

Spike or no spike

(1 or -1)

Images by Eric Chudler, UW
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Inputs
(axons 
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The “Perceptron”

Inputs ui

(+1 or -1)
Output v

(+1 or -1)

Weighted Sum  > Threshold

(x) = +1 if x > 0 and -1 if x ≤ 0
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[Introduced by Rosenblatt (1958) building on McCulloch and Pitts (1943)]
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u1

u2

What does a Perceptron do?

F Weighted sum defines a 

hyperplane (line, plane, …)

F All inputs on one side of 

hyperplane have output = +1 

(“class 1”); all inputs on other 

side have output = -1 (“class 2”)

F Perceptrons can classify!

Can perform linear classification

denotes +1 output 

denotes -1 output
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How do we learn the weights and threshold?
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u2
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Perceptron Learning Rule

Given input u, output       , and desired output vd:

Adjust wi and  according to output error (vd – v): 

i

d

i uvvw )(   For positive input (ui = +1):

Increases weight if error is positive

Decreases weight if error is negative 

(opposite for ui = -1)

Decreases threshold if error is positive 

Increases threshold if error is negative 
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Can Perceptrons learn any function?

1

-1

1

-1
u1

u2
-1 -1 -1

1 -1 +1

-1 1 +1

1 1 -1

u1 u2 XOR

Perceptrons can only classify linearly separable data

How do we handle linear inseparability?

? +1 output

-1 output
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Multilayer Perceptrons

F Can classify linearly inseparable data
Can solve XOR

F An example of a two-layer perceptron that computes XOR
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u1 u2

(Inputs and outputs are +1 or -1)
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What if you want continuous outputs rather 

than +1/-1 outputs (i.e., regression)?

E.g., Teaching a network to drive a truck

Image Source: Wikimedia Commons
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Sigmoid output function:

Parameter  controls 

the slope

g(a)
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Continuous Outputs with Sigmoid Networks

 = 0.1 = 5

20

Learning Multilayer Sigmoid Networks

Learn weights that minimize 

output error: 

Input u = (u1  u2 … uK)T

Output v = (v1  v2 … vJ)
T
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(see Supplementary Materials for details)
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Use gradient descent!
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Example: Backing up a Truck (courtesy of Keith Grochow)

Teaching a Network to back a truck into a loading dock

• Input: x, y, θ of truck

• Output: Steering angle
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Enter…Reinforcement Learning

Image Source: Wikimedia Commons

Forget trucks 

doin’ supervised 

learning – how do 

I find some food 

in a barn?
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Next Class: Reinforcement Learning

Agent

Environment

State

ut

Reward

rt

Action

at

Image Source: Wikimedia Commons


