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Lecture 11: 

Unsupervised 

Learning
(Chapters  8 & 10)

2

Last Time: Hebbian Learning implements Principal 

Component Analysis (PCA)

Covariance Rule

Hebbian learning learns a weight vector aligned with the 

principal eigenvector of input correlation/covariance matrix 

(i.e., direction of maximum variance)
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Image Source: Dayan & Abbott textbook 
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What about this input data?

?

What w does the 

covariance rule 

learn?

Initial w

Image Source: Dayan & Abbott textbook 
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PCA does not correctly describe the data

Image Source: Dayan & Abbott textbook 
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Introduction to Unsupervised Learning

Input data seems to be made up of two clusters of points

Can neurons learn such clusters?

Image Source: Dayan & Abbott textbook 
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Using Neurons to represent Clusters
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What is the relation between most active neuron 

versus 

one whose weight vector is closest to the input ?
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Updating the Weights given a New Input

• Given new input, pick a 

cluster (weight vector closest 

to input)

• Set weight vector to running 

average of all inputs ui in that 

cluster
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Competitive Learning
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• Given a new input, pick 

the most active neuron 

(“winner-takes-all”)
 One whose weights are 

closest to new input

• Move weight vector for 

that neuron a bit closer to 

new input:
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Competitive Learning and Self Organizing 

Maps (a.k.a. Kohonen Maps)

• Given an input, pick the winning neuron 

• Update weights for that neuron AND other neurons in the 

neighborhood of the winner

Orientation preference map in 

the primary visual cortex (V1)

Image Source: Wikimedia Commons
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Is there a principled way of 

learning models of input data?

wA
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PCA/Hebb/Covariance rule Competitive Learning 

Image Source: Dayan & Abbott textbook 
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Enter…Unsupervised Learning
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Parameters G = (v, v, v) Gaussian

Mixture of Gaussians Model:
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The Goal of Unsupervised Learning

];|[ Gp uv

Posterior

F Goal: Learn a good “Generative 

Model” for the data you are seeing
Mimic the data generation process

F General Approach: Given data u, 

need to solve two sub-problems:
Estimate causes v (compute Posterior)

Same as “Recognition” problem

Learn parameters G
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Prior
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Clustering as Unsupervised Learning
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Prior =  v

(v, v; v = A, B)

How do we learn the 

model parameters

G = (v, v, v)?

Gaussian

Mixture of Gaussians Model:
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EM algorithm for Unsupervised Learning

F Stands for Expectation-Maximization algorithm

F Iterate the following two steps until convergence:
E step: Compute posterior distribution of v (= A, B) for each u:

M step: Change parameters G using results from E step
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“Soft” competition

(not winner-takes-all)

(Update 

parameters)
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Results from the EM algorithm

Input data:

B

2B

A2A

Image Source: Dayan & Abbott textbook 
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Suppose the Data are Natural Images…

What kind of generative model would you use?

How do you learn the “causes” of such images?
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Image Source: Rao & Ballard, 1999
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Eigenvectors strike again? 

1 e 2 e

Image Source: Turk & Pentland, 1991

.........
Input data u:

Face images
(N pixels total)

Eigenvectors 

of the Input 

Covariance 

Matrix

.........

“Eigenfaces”

3 e
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A Linear Model of Images using Eigenvectors
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Suppose you use only the first M principal eigenvectors:

pixels10,10 E.g., 6 NM
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Eigenvector representation is good for 

compression but not so good if you want to 

extract the local components (or parts) of an 

image (e.g., parts of a face, local edges in a 

scene, etc.)
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Not so fast, Eigenvectors! 
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A Linear Model for Natural Images
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G = matrix whose columns are gi

v = vector whose elements are vi

? ? ?

(Note: M can be larger than N)

How do we learn gi that are local 

components/parts of images?
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Next Class: From Unsupervised to 

Supervised and Reinforcement Learning

F Things to do:
Read Chapter 9

Homework 4 due on Monday, February 27

Work on mini-project

I ♥ RL! 


