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Lecture 11:
Unsupervised

Learning *
(Chapters 8 & 10)

Last Time: Hebbian Learning implements Principal
Component Analysis (PCA)

Covariance Rule

d
T, d—\f[v =u(v—(v))

Hebbian learning learns a weight vector aligned with the
principal eigenvector of input correlation/covariance matrix
(i.e., direction of maximum variance)
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What about this input data?
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PCA does not correctly describe the data
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Introduction to Unsupervised Learning
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Input data seems to be made up of two clusters of points
Can neurons learn such clusters?
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Using Neurons to represent Clusters

2 Cluster A




What is the relation between most active neuron
Versus
one whose weight vector is closest to the input ?
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Updating the Weights given a New Input
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Competitive Learning
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» Given a new input, pick
the most active neuron
“winner-takes-all”)
= One whose weights are
closest to new input

* Move weight vector for
that neuron a bit closer to
new input:

AW = ¢ - (U, —w)

Competitive Learning Example: Initial Weights
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Competitive Learning Example: After Updates
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Competitive Learning and Self Organizing
Maps (a.k.a. Kohonen Maps)

» Given an input, pick the winning neuron
» Update weights for that neuron AND other neurons in the
neighborhood of the winner

@+@+»@

Orientation preference map in
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PCA/Hebb/Covariance rule Competitive Learning

Is there a principled way of
learning models of input data?
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Enter...Unsupervised Learning

Causes v Prior 2 y (W, 0 V=A, B)
p[v;G] 1 A@/
X n x
Generative 0 x §
model B
! 14 0 1 2
Data Likelihood Uy
pointsu  plu|v;G] Mixture of Gaussians Model:
p[u;G] =D p[u|v;G]p[v;G]
v ot t

Parameters G = (u,, 6., 7,)  Gaussian Prior = v,




The Goal of Unsupervised Learning

Prior Causes v Posterior

p[v;G] plvIu;G]
_ 4+ Goal: Learn a good “Generative
Generative v )
odel Model” for the data you are seeing
< Mimic the data generation process
v + General Approach: Given data u,
Likelihood Data u need to solve two sub-problems:
plu|v;G] < Estimate causes v (compute Posterior)

» Same as “Recognition” problem
< Learn parameters G
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Clustering as Unsupervised Learning

2 (W, 0, V=A B)
X

AT

0 - How do we learn the
B model parameters
711 0 1 2 G= (uv’ Oys Vv)?

uy
Mixture of Gaussians Model:
p[u;G] = p[u|v;G]p[v;G]

v 1

Gaussian  Prior = v, 16




EM algorithm for Unsupervised Learning

+ Stands for Expectation-Maximization algorithm

+ lterate the following two steps until convergence:
< E step: Compute posterior distribution of v (= A, B) for each u:
plulv;GIp[v;G] _ N(uip,.0,1)-7, (Bayes rule)

plu; G] - Z N(; 1, 0,1)-7,  “Soft” competition
v (not winner-takes-all)

plvIu;G]=

<> M step: Change parameters G using results from E step

> plv|u;G]-u 2 Y plvIuGllu—p, [ (Update
n, ZW o, = S pIv] U;G] parameters)

7o =2, PlVIu;GI/N,
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Results from the EM algorithm
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Suppose the Data are Natural Images...

Causes v
p[v;G]

100 pixel.:

What kind of generative model would you use?
How do you learn the “causes” of such images?

Image Source: Rao & Ballard, 1999
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Eigenvectors strike again?

Input data u:
Face images
(N pixels total)

e ¢, e,
- -t.‘-‘- o -~k
Eigenvectors ik, 35 R
of the Input i 3
Covariance J® 7 -
Matrix : . ,M;r
“Eigenfaces”
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A Linear Model of Images using Eigenvectors

Input image u

i=1

Suppose you use only the first M principal eigenvectors:

M
u=Zeivi+noise (M < N)
i E.g. M =10, N = 10°pixels
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Not so fast, Eigenvectors!

e3
; .V2+V3+...

M
u=> eV +noise (M <N)
i=1

Input image u

Eigenvector representation is good for
compression but not so good if you want to
extract the local components (or parts) of an
image (e.g., parts of a face, local edges in a
scene, etc.)
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A Linear Model for Natural Images

Input image u 0, 0, ¢y

?

M
u= Z:givi + noise (Note: M can be larger than N)
i=1

— GV + noise G = matrix whose columns are g;
v = vector whose elements are v,

How do we learn g; that are local
components/parts of images?
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Next Class: From Unsupervised to
Supervised and Reinforcement Learning

+ Things to do:
< Read Chapter 9
< Homework 4 due on Monday, February 27
< Work on mini-project




