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CSE/NEURO 528

Lecture 10: Plasticity and Learning
(Chapter  8)
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Gameplan

F Plasticity and Learning
Types: Unsupervised, Supervised, and Reinforcement learning

F Today: Unsupervised Learning
Hebb rule and its variants (Covariance, Oja rule)

Mathematical formulation

Stability analysis of learning rules

(Copyright, Warner Brothers)
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So far, we have been analyzing networks with 

fixed sets of synaptic weights W and M 
(based on eigenvalues of M etc.)

Can synaptic weights be adapted in 

response to inputs?
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Plasticity and Learning: Adapting the Connections

F Question 1: How do we adapt the synaptic weights W and M 

to solve useful tasks? 

F Question 2: How does the brain do it?
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Synaptic Plasticity in the Brain

Increase in 

EPSP size 

for same 

input over 

time

A

B

How can we measure 

plasticity using electrodes?

BA

Stim Record
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Data from an Experiment

(From: Citri and Malenka, Neuropsychopharmacology, 2008)

Hippocampus
LTP = Long Term Potentiation

LTD = Long Term Depression
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LTP = Experimentally observed increase in synaptic strength 

that lasts for hours or days

Long Term Potentiation (LTP)

Increase in 

EPSP size 

for same 

input over 

time

BA
A

B

Image Source: Wikimedia Commons
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LTD = Experimentally observed decrease in synaptic strength 

that lasts for hours or days

Long Term Depression (LTD)

Decrease in 

EPSP size 

for same 

input over 

time

BA
A

B

Image Source: Wikimedia Commons
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Hebb’s Learning Rule

If neuron A repeatedly takes part in 

firing neuron B, then the synapse 

from A to B is strengthened

BA

BA

“Neurons that fire 

together 

wire together!”

Image Source: Wikimedia Commons
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Formalizing Hebb’s Rule

F Consider a single linear neuron 

with steady state output:

F Basic Hebb Rule:
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Discrete Implementation: 
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What is the average effect of the Hebb rule?

F Hebb Rule: 

F Average effect of the rule:

F Q is the input correlation matrix:
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Covariance Rule

F Hebb rule only increases synaptic weights (LTP)
What about LTD?

F Covariance rule:

F Average effect of the rule:
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Are these learning rules stable?

F Does w converge to a stable value or explode?
Look at what happens to the length of w over time

F Hebb rule: 

F Covariance rule: 
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Oja’s Rule for Hebbian Learning

F Oja’s rule:

F Stable?
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Summary: Hebbian Learning

F Hebb rule:

F Covariance rule:

F Oja’s rule:
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(unless constraint on 

||w|| is imposed)

(unless constraint on 

||w|| is imposed)
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What does Hebbian Learning do anyway?

F Start with the averaged Hebb rule:

F How do we solve this equation to find w(t)?

Eigenvectors to the rescue (again)!

F Write w(t) in terms of eigenvectors of Q:

F Substitute in Hebb rule diff. eq. and simplify as before:
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The Brain can do Statistics!*
Hebbian Learning implements Principal Component Analysis (PCA)

Hebb Rule Hebb Rule            Covariance Rule
Input mean = (0,0) Input mean = (2,2)        Input mean = (2,2)

Hebbian learning learns a weight vector aligned with the 

principal eigenvector of input correlation/covariance matrix 

(i.e., direction of maximum variance)

Initial w

Final w Final w Final w

Image Source: Dayan & Abbott textbook *See a previous lecture for “The Brain can do Calculus!”
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Next Class: Unsupervised to Supervised 

Learning

F Things to do:
Finish Chapter 8 and Start Chapter 10 

Homework 3 due on Sunday, February 19

Start mini-project

Hebb 

rules!


