CSE/NEURO 528

Lecture 10: Plasticity and Learning
(Chapter 8)

Gameplan

+ Plasticity and Learning
< Types: Unsupervised, Supervised, and Reinforcement learning

+ Today: Unsupervised Learning
< Hebb rule and its variants (Covariance, Oja rule)
< Mathematical formulation
< Stability analysis of learning rules




So far, we have been analyzing networks with

fixed sets of synaptic weights W and M
(based on eigenvalues of M etc.)

Can synaptic weights be adapted in
response to inputs?

Plasticity and Learning: Adapting the Connections

output v

inputu 1y U U3 . . . Uy,

+ Question 1: How do we adapt the synaptic weights W and M
to solve useful tasks?

+ Question 2: How does the brain do it?




Synaptic Plasticity in the Brain
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LTP = Long Term Potentiation
LTD = Long Term Depression

Hippocampus

(From: Citri and Malenka, Neuropsychopharmacology, 2008)
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Long Term Potentiation (LTP)

LTP = Experimentally observed increase in synaptic strength
that lasts for hours or days
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Long Term Depression (LTD)

LTD = Experimentally observed decrease in synaptic strength
that lasts for hours or days
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Hebb’s Learning Rule

Il >

l If neuron A repeatedly takes part in
I Il firing neuron B, then the synapse

< > \ from A to B is strengthened
)

A

<

“Neurons that fire
together

wire together!”

/
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Image Source: Wikimedia Commons

Formalizing Hebb’s Rule

+ Consider a single linear neuron Q W
with steady state output:

Te==0)
V=w-u=wW'u=u'w
W
<+ Basic Hebb Rule: Ty = uv

Discrete Implementation:

, Wt AAt: “WO v or wit+ At = wit) + 2wy
TW

W,,, =W, +&-uv (or Aw=g¢g-uv)
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What is the average effect of the Hebb rule?

dw
+ Hebb Rule: 7, E =Uuv

+ Average effect of the rule:

T, Z—\iv =(uv) = <uuTW>u = <uuT >uw =Qw

+ Q is the input correlation matrix:Q = <uuT>

u
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Covariance Rule

+ Hebb rule only increases synaptic weights (LTP)
< What about LTD?

4+ Covariance rule:

T d_W =u(v-— <V>) (Note: LTD for low or no
i output given some input)

+ Average effect of the rule:
d T T T T
de_\{[\/: (u(v—(v))), = <u(u —(u) )W>u = (<uu >—<u><u> )/v

=Cw (C is the input covariance matrix <uuT > — <u><u>T)
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Are these learning rules stable?

+ Does w converge to a stable value or explode?
< Look at what happens to the length of w over time

+ Hebb rule: rwd—wzuv

dt
2
dHWH =2WTd7W=2WT(UV/TW)=£VZ >O ) WgI’OWS
dt dt 7, without bound!
+ Covariance rule: rw%’t"= u(v—(v))
dw]® _ cdw _
it =2w E_2W (uv—(v))/z,) = —(v v(v))
H H 2y_2 W grows
Averaging RHS, vi)=—o,>0
7, < > W) Ty without bound!
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Oja’s Rule for Hebbian Learning

) dw 2
+ Oja’s rule: er =Uuv—-—av°'w (a>0)

+ Stable?
2
M = 2WT diw — iWT (UV _ CA/ZW) - i(VZ _ ONZWTW)
dt dadt z,
2
ie., 7, M =2vi(1- aHWHZ)
dt

At steady state : HWH2 1 ie, |w|= L

a Ja

w does not grow without bound, i.e.,
Oja’s rule is stable! 1




Summary: Hebbian Learning

4+ Hebb rule:
dw (unless constraint on
Twgp =W Unstable iw]| is imposed)

4+ Covariance rule:

dw (unless constraint on
Tw g u(v—(v)) Unstable il is imposed)
+ Oja’s rule:
dw ) 1
T — =Uuv—oN°W Stable Wi —> —=
o Wl =
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What does Hebbian Learning do anyway?

+ Start with the averaged Hebb rule: z,, %Vtv =Qw

+ How do we solve this equation to find w(t)?
< Eigenvectors to the rescue (again)!

+ Write w(t) in terms of eigenvectors of Q: w(t) = Zci (t)e;
+ Substitute in Hebb rule diff. eq. and simplify as before:

TW%Z/LQ le., ¢ (t)=c,(0)exp(At/z,)

w(t) = Zci (e, = Zci (0)exp(4t/z,)e;

For large t, largest eigenvalue term dominates:w(t) oc e,
e
For Oja’s rule: w(t) = —=
( d \/;)
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The Brain can do Statistics!™*
Hebbian Learning implements Principal Component Analysis (PCA)

Hebb Rule Hebb Rule Covariance Rule
Input mean = (0,0) Input mean = (2,2) Input mean = (2,2)
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Hebbian learning learns a weight vector aligned with the

principal eigenvector of input correlation/covariance matrix
(i.e., direction of maximum variance)

Image Source: Dayan & Abbott textbook

*See a previous lecture for “The Brain can do Calculus!”

Next Class: Unsupervised to Supervised

Learning

+ Things to do:
< Finish Chapter 8 and Start Chapter 10

< Homework 3 due on Sunday, February 19
< Start mini-project
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