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Macaque visual cortex

Fellemnan and van Essen (1991)

David C.van Essen, In: Visual Neurosciences, 2003 (L. Chalupa, J. Warner, eds.)
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The visual motion pathway from retina to V1
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The visual motion pathway from retina to V1
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The visual motion pathway from retina to V1
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The visual motion pathway from retina to V1
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Direction Selective (DS) Neurons
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V1 complex DS neuron
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Temporal integration in visual cortex

Adaptive temporal integration (ATI)

Temporal integration is longer for slower stimulus motion,
and shorter for faster motion, as measured in the spike trains of
complex DS neurons in V1 and V5/MT (Bair and Movshon, 2004).
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Adaptive representation of information

feature decision function

f f(t)
J\J\ - — L1
OI

«—>

AN

As one changes the characteristics of s(t), changes can occur
both in the feature and in the decision function

Barlow ’50s, Laughlin ‘81, Shapley et al, ‘70s, Atick ‘91, Brenner ‘00
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everse correlation: the spike-triggered average

Spike-
conditional
ensemble
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Summary of experimental findings

slow fast
’
100 ms

Space

Time —»

Adaptive temporal integration (ATI)

Temporal integration appears to change with the
statistics of the motion (Bair & Movshon, 2004).
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The Motion Energy Model
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Temporal Integration in the Motion Energy Model
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Noise-driven adaptation: in vitro and
mathematical analysis™

Liam Paninski*!, Brian Lau, Alex Reyes
Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA

Abstract

Variance adaptation processes have recently been examined in cells of the fly visual system and
various vertebrate preparations. To better understand the contributions of somatic mechanisms
to this kind of adaptation, we recorded intracellularly in vitro from neurons of rat sensorimotor
cortex. The cells were stimulated with a noise current whose standard deviation was varied
parametrically. We observed systematic variance-dependent adaptation (defined as a scaling of
a nonlinear transfer function) similar in many respects to the effects observed in vivo. The fact
that similar adaptive phenomena are seen in such different preparations led us to investigate a
simple model of stochastic stimulus-driven neural activity. The simplest such model, the leaky
integrate-and-fire (LIF) cell driven by noise current, permits us to analytically compute many
quantities relevant to our observations on adaptation. We show that the LIF model displays
“adaptive” behavior which is quite similar to the effects observed in vivo and in vitro.
© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Adaptation; Noise; Integrate-and-fire; Fokker—Planck

It is widely understood that sensory neurons adapt to the prevailing statistics of their
inputs [10]. Fairhall et al. [5] recently reported one such adaptation process in the fly
visual system; they described a motion-sensitive neuron that appears to scale its input—
output function to adapt its firing rate to the variance of the observed motion signal.
However, the mechanisms underlying this type of contrast-dependent adaptation are un-
known,; specifically, it is unclear whether the observed phenomena arise from network
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Intrinsic Gain Modulation and Adaptive Neural Coding

Sungho Hong™, Brian Nils Lundstrom, Adrienne L. Fairhall

Physiology and Biophysics Department, University of Washington, Seattle, Washington, United States of America

Abstract

In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a
thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In
some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a
randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by
background noise in cortical neurons: the slope of the firing rate versus current (f-/) curve changes with the variance of
background random input. Here, we show a direct correspondence between these two observations by relating variance-
dependent changes in the gain of f-/ curves to characteristics of the changing empirical linear/nonlinear model obtained by
sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect
to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two
conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters,
we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe
how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.

Citation: Hong S, Lundstrom BN, Fairhall AL (2008) Intrinsic Gain Modulation and Adaptive Neural Coding. PLoS Comput Biol 4(7): €1000119. doi:10.1371/
journal.pcbi. 1000119

Editor: Karl J. Friston, University College London, United Kingdom
Received January 30, 2008; Accepted June 9, 2008; Published July 18, 2008

Copyright: © 2008 Hong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Burroughs-Wellcome Careers at the Scientific Interface grant, a Sloan Research Fellowship, and a McKnight Scholar
Award to ALF. BNL was supported by grant number F30NS055650 from the National Institute of Neurological Disorders and Stroke, the Medical Scientist Training
Program at the University of Washington supported by the National Institute of General Sciences, and an Achievement Rewards for College Scientists fellowship.

* E-mail: shhong@oist.jp

Competing Interests: The authors have declared that no competing interests exist.

o Current address: Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan

Introduction

An f-I curve, defined as the mean firing rate in response to a
stationary mean current input, is one of the simplest ways to
characterize how a neuron transforms a stimulus into a spike train
output as a function of the magnitude of a single stimulus
parameter. Recently, the dependence of f~I curves on other input
statistics such as the variance has been examined: the slope of the
S curve, or gain, is modulated in diverse ways in response to
different intensities of added noise [1-4]. This enables multipli-
cative control of the neuronal gain by the level of background
synaptic activity [1]: changing the level of the background synaptic
activity is equivalent to changing the variance of the noisy
balanced excitatory and inhibitory input current to the soma,
which modulates the gain of the f/ curve. It has been
demonstrated that such somatic gain modulation, combined with
saturation in the dendrites, can lead to multiplicative gain control
in a single neuron by background mputs [5]. From a computa-
tional perspective, the sensitivity of the firing rate to mean or
variance can be thought of as distinguishing the neuron’s function
as either an integrator (greater sensitivity to the mean) or a
differentiator/coincidence detector (greater sensitivity to fluctua-
tions, as quantified by the variance) [3,6,7].

An alternative method of characterizing a neuron’s input-to-
output transformation is through a linear/nonlinear (LN) cascade
model [8,9]. These models comprise a set of linear filters or
receptive field that selects particular features from the input; the
filter output is transformed by a nonlinear threshold stage into a
time-varying firing rate. Spike-triggered covariance analysis

@ PLoS Computational Biology | www.ploscompbiol.org

[10,11] reconstructs a model with multiple features from a
neuron’s input/output data. It has been widely employed to
characterize both neural systems [12-15] and single neurons or
neuron models subject to current or conductance inputs [16-19].

Generally, results of reverse correlation analysis may depend on
the statistics of the stimulus used to sample the model [15,19-25].
While some of the dependence on stimulus statistics in the response
of a neuron or neural system may reflect underlying plasticity, in
some cases, the rapid timescale of the changes suggests the action of
Intrinsic nonlinearities in systems with fixed parameters [16,19,25—
29], which changes the effective computation of a neuron.

Our goal here is to unify the f-/ curve description of variance-
dependent adaptive computation with that given by the LN model:
we present analytical results showing that the variance-dependent
modulation of the firing rate is closely related to adaptive changes in
the recovered LN model if a fixed underlying model is assumed. When
the model relies only on a single feature, we find that such a system
can show only a single type of gain modulation, which accompanies
an interesting asymptotic scaling behavior. With multiple features,
the model can show more diverse adaptive behaviors, exemplified
by two conductance-based models that we will study.

Results

Diverse Variance-Dependent Gain Modulations without
Spike Rate Adaptation

Recently, Higgs et al. [3] and Arsiero et al. [4] identified
different forms of variance-dependent change in the f-/ curves of

July 2008 | Volume 4 | Issue 7 | e1000119
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Comparison of STA width for Fast vs. Slow Components
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Noisy input to leaky integrate-and-fire unit
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Multitemporal Encoding in Models
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Multitemporal Encoding in Models

Linear integrate and fire, with
binary, white noise inputs
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Temporal integration in visual cortex

Summary
Channel-specific control of temporal integration
No evidence for cortical normalization
Multitemporal encoding - the multiplexing of distinct temporal

signals, reflected in the spike discharge of a single neuron

A parallel pathway model can account for the data.
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A principled approach to modelling

Modularity - local representation of computation

Emulation - responses resemble those recorded in major cell classes
Applicability - accept arbitrary, time-varying stimuli

Accessibility - available on the web, fast computation is cheap
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Spiking Units

Conductance-driven leaky integrate-and-fire (LIF) units
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A circuit implementation for building V1 DS neurons
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A circuit implementation for building V1 DS neurons
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Creating Direction Selectivity

Direction tuning curve

90
135 20 45
Spks/s
10
180 O 0
225 315
270

Direction of motion (deg)

.../talk/11/autumn/fig/

ds_intro_1.ai



Creating Direction Selectivity

Direction tuning curve Reichardt mechanism
Reichardt (1957)
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Creating Direction Selectivity

Direction tuning curve Reichardt mechanism
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Creating Direction Selectivity
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Creating Direction Selectivity
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Creating Direction Selectivity

Direction tuning curve Reichardt mechanism Network
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Presynaptic Delay: Delay in Inputs
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Postsynaptic Delay: Delay in Dendrites
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Comparing models with pre- and postsynaptic DS delays
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Comparing models with pre- and postsynaptic DS delays
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Comparing models with pre- and postsynaptic DS delays
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Model Demo
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Multitemporal Encoding in Models
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binary, white noise inputs
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www.iModel.org

Related models

DS_Post Fac

DS_Post Sup
DS_Pre Fac

DS_Pre_Sup

Variations

DS_Post Fac

DS_Post_Fac

Direction Selective, Post-Synaptic, Facilatory

Summary

Complex direction selective (DS) cells are created within a
spiking network model from pair-wise interactions of spiking
inputs from non-DS, orientation-tuned simple cells. The DS
interaction involves (i) cell pairs with spatial RFs that are
phase-offset by about 90 deg, (ii) a temporal delay that is
implemented post-synaptically (relative to the synapse at
the transformation from non-DS to DS), and (iii) a
facilitatory interaction. This is a hierarchical model
containing four distinct populations of spiking units: LGN (ON
and OFF center), V1 simple inhibitory, simple excitatory, and
complex DS. The spiking cells are conductance-driven
integrate and fire units modeled on those of Troyer et al.
(1998).

( MiewModel ) DS_Post_Fac

Results
To be added. Under development. Apr 2010.
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www.imodel.org DS_Post_Fac

(A) Organization of the four populations of spiking units:
LGN-lateral geniculate nucleus, IN-inhibitory V1 simple cells,
EX-excitatory V1 simple cells, DS-direction selective V1
cells.

(B) A population of four V1 DS complex cells.

(C) Within a 12,12,4 (x,y,z) lattice of V1 inhibitory simple
cells (IN), cells in the 3rd z-layer that are presynaptic to the
white-circled cell in (D) are shown in color. Colors indicate
preferred orientation (see orientation key between panels C
and D).

(D) The 12,12,4 lattice of V1 excitatory simple cells (EX) is
shown where color indicates orientation (see orientation key). &
The white-circled cell gets IN inputs as marked in (C) and v
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Summary

We developed a set of spiking network models for DS circuits
motivated by several popular theories.

The models offer insight for developing experimental solutions
to some of the fundamental questions about DS neurons.

We are developing interactive tools to make it easy for others
to explore and test the models.
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