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Temporal integration in visual cortex

Adaptive temporal integration (ATI)

Temporal integration is longer for slower stimulus motion,
and shorter for faster motion, as measured in the spike trains of
complex DS neurons in V1 and V5/MT (Bair and Movshon, 2004).
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As one changes the characteristics of s(t), changes can occur  
 both in the feature and in the decision function  

Barlow  ’50s,  Laughlin ‘81,  Shapley  et  al,  ‘70s,  Atick ‘91,  Brenner  ‘00 

Adaptive representation of information 

















Reverse correlation: the spike-triggered average 
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conditional 
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Noise-driven adaptation: in vitro and
mathematical analysis!

Liam Paninski∗;1 , Brian Lau, Alex Reyes
Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA

Abstract

Variance adaptation processes have recently been examined in cells of the !y visual system and
various vertebrate preparations. To better understand the contributions of somatic mechanisms
to this kind of adaptation, we recorded intracellularly in vitro from neurons of rat sensorimotor
cortex. The cells were stimulated with a noise current whose standard deviation was varied
parametrically. We observed systematic variance-dependent adaptation (de"ned as a scaling of
a nonlinear transfer function) similar in many respects to the e#ects observed in vivo. The fact
that similar adaptive phenomena are seen in such di#erent preparations led us to investigate a
simple model of stochastic stimulus-driven neural activity. The simplest such model, the leaky
integrate-and-"re (LIF) cell driven by noise current, permits us to analytically compute many
quantities relevant to our observations on adaptation. We show that the LIF model displays
“adaptive” behavior which is quite similar to the e#ects observed in vivo and in vitro.
c© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Adaptation; Noise; Integrate-and-"re; Fokker–Planck

It is widely understood that sensory neurons adapt to the prevailing statistics of their
inputs [10]. Fairhall et al. [5] recently reported one such adaptation process in the !y
visual system; they described a motion-sensitive neuron that appears to scale its input–
output function to adapt its "ring rate to the variance of the observed motion signal.
However, the mechanisms underlying this type of contrast-dependent adaptation are un-
known; speci"cally, it is unclear whether the observed phenomena arise from network
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Intrinsic Gain Modulation and Adaptive Neural Coding
Sungho Hong¤*, Brian Nils Lundstrom, Adrienne L. Fairhall

Physiology and Biophysics Department, University of Washington, Seattle, Washington, United States of America

Abstract

In many cases, the computation of a neural system can be reduced to a receptive field, or a set of linear filters, and a
thresholding function, or gain curve, which determines the firing probability; this is known as a linear/nonlinear model. In
some forms of sensory adaptation, these linear filters and gain curve adjust very rapidly to changes in the variance of a
randomly varying driving input. An apparently similar but previously unrelated issue is the observation of gain control by
background noise in cortical neurons: the slope of the firing rate versus current (f-I) curve changes with the variance of
background random input. Here, we show a direct correspondence between these two observations by relating variance-
dependent changes in the gain of f-I curves to characteristics of the changing empirical linear/nonlinear model obtained by
sampling. In the case that the underlying system is fixed, we derive relationships relating the change of the gain with respect
to both mean and variance with the receptive fields derived from reverse correlation on a white noise stimulus. Using two
conductance-based model neurons that display distinct gain modulation properties through a simple change in parameters,
we show that coding properties of both these models quantitatively satisfy the predicted relationships. Our results describe
how both variance-dependent gain modulation and adaptive neural computation result from intrinsic nonlinearity.
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Introduction

An f-I curve, defined as the mean firing rate in response to a
stationary mean current input, is one of the simplest ways to
characterize how a neuron transforms a stimulus into a spike train
output as a function of the magnitude of a single stimulus
parameter. Recently, the dependence of f-I curves on other input
statistics such as the variance has been examined: the slope of the
f-I curve, or gain, is modulated in diverse ways in response to
different intensities of added noise [1–4]. This enables multipli-
cative control of the neuronal gain by the level of background
synaptic activity [1]: changing the level of the background synaptic
activity is equivalent to changing the variance of the noisy
balanced excitatory and inhibitory input current to the soma,
which modulates the gain of the f-I curve. It has been
demonstrated that such somatic gain modulation, combined with
saturation in the dendrites, can lead to multiplicative gain control
in a single neuron by background inputs [5]. From a computa-
tional perspective, the sensitivity of the firing rate to mean or
variance can be thought of as distinguishing the neuron’s function
as either an integrator (greater sensitivity to the mean) or a
differentiator/coincidence detector (greater sensitivity to fluctua-
tions, as quantified by the variance) [3,6,7].

An alternative method of characterizing a neuron’s input-to-
output transformation is through a linear/nonlinear (LN) cascade
model [8,9]. These models comprise a set of linear filters or
receptive field that selects particular features from the input; the
filter output is transformed by a nonlinear threshold stage into a
time-varying firing rate. Spike-triggered covariance analysis

[10,11] reconstructs a model with multiple features from a
neuron’s input/output data. It has been widely employed to
characterize both neural systems [12–15] and single neurons or
neuron models subject to current or conductance inputs [16–19].

Generally, results of reverse correlation analysis may depend on
the statistics of the stimulus used to sample the model [15,19–25].
While some of the dependence on stimulus statistics in the response
of a neuron or neural system may reflect underlying plasticity, in
some cases, the rapid timescale of the changes suggests the action of
intrinsic nonlinearities in systems with fixed parameters [16,19,25–
29], which changes the effective computation of a neuron.

Our goal here is to unify the f-I curve description of variance-
dependent adaptive computation with that given by the LN model:
we present analytical results showing that the variance-dependent
modulation of the firing rate is closely related to adaptive changes in
the recovered LN model if a fixed underlying model is assumed. When
the model relies only on a single feature, we find that such a system
can show only a single type of gain modulation, which accompanies
an interesting asymptotic scaling behavior. With multiple features,
the model can show more diverse adaptive behaviors, exemplified
by two conductance-based models that we will study.

Results

Diverse Variance-Dependent Gain Modulations without
Spike Rate Adaptation

Recently, Higgs et al. [3] and Arsiero et al. [4] identified
different forms of variance-dependent change in the f-I curves of

PLoS Computational Biology | www.ploscompbiol.org 1 July 2008 | Volume 4 | Issue 7 | e1000119
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Noisy input to leaky integrate-and-fire unit
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pre-cortical 

striate cortex 

extrastriate 
cortex 

Modularity - local representation of computation
Emulation - responses resemble those recorded in major cell classes
Applicability - accept arbitrary, time-varying stimuli
Accessibility - available on the web,  fast computation is cheap

A principled approach to modelling 

Online: 
www.iModel.org 

.../talk/12/einstein/fig/ modint5.ai
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Comparing models with pre- and postsynaptic DS delays!



Comparing models with pre- and postsynaptic DS delays!

Direction!! Temporal 
Frequency!

Drifting Gratings!



Comparing models with pre- and postsynaptic DS delays!

Direction!! Temporal 
Frequency!

1D White Noise!Drifting Gratings!
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