Brain — Computer Interfaces

Physiologic basis for feature selection, and
decoding techniques



Brain — Computer Interfaces

For dexterous motor control

Hochberg 2012
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Architecture of a BCI
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BCI Signal Types
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BCI Signal Types

Signal Cell count | Raw Feature Z Spatial Signal
Magnitude | (depends) | Specificity | Stability

EEG (non- >1 ~50 uVv 1-5cm Long-term?
invasive)

ECoG 500K ~500 uV 10-20 3-10 mm Months
(semi-
invasive?)

Intracortical 1-?77?7? 10s of mV Very high < 300 um Days
(invasive)

Appropriate modality choice depends on application.
Consider subject population. Research/Clinical goals.
Stimulation requirements.
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Feature extraction, intracortical recordings
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Feature extraction, intracortical recordings

The quest for single units

L A L )
Ltk g
LA 1
A aEs |
Ly
Aliﬁii
A L “A 4
1 ool |

Filtered data

\/

Spike detection

mean firing
—>

rates



Feature extraction, intracortical recordings

The quest for single units

L A L )
Ltk g
LA 1
A aEs |
oy .
A L A 4
Vol

\

Filtered data

. Ensemble
spiking

mean firing
—>

rates




Feature extraction, intracortical recordings

L A L )
Ltk g
LA 1
A aEs |
Ly
ALLAAA
A L “A 4
V.|

The quest for single units

iii) L **

' Local Field
Potentials (LFPs)

. Ensemble
spiking

mean firing
—>

rates




Feature extraction, ECoG and LFPs
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Feature extraction, ECoG and LFPs
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Spectral Estimation:
STFFT
Wavelets
Band filtering and envelope detection
Auto-regressive model



Feature extraction, EEG
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Feature extraction, EEG
SCALP . —

Signal spreads as it
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1) Correct for spatial spreading

SKULL : : L
Common Spatial Patterns — Linear combination of
DURA electrodes maximizing two class discriminability
correx A = Use of spherical head model as solution to forward model
"’jr—;F‘“ Subject specific MRI as solution to forward model
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2) Apply same spectral estimation
techniques used in ECoG (50 Hz and
below) for SMR and SSVEP

Or

Simple LPF for EPs
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Decoding, intracortical recordings
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Decoding, intracortical recordings

Translation of neural signal to one or more continuous variables

Population Vector
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Decoding, ECoG

Translation of neural signal to one or more continuous variables,
High SNR allows (causes ®) us to be lazy.
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Decoding, ECoG

Translation of neural signal to one or more continuous variables,
High SNR allows (causes ®) us to be lazy.
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Decoding, EEG

Much harder computational problem, because of low SNR Neural signal
typically translated to discrete variable with pre-defined (and pre-trained)
number of states
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SVM, Naive Bayes, Decision Trees,
: LDA Random Forest, Neural Network, on and

on...
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ACCURACY (%)

An Inherent Problem
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The Underlying Model
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Closed-loop decoder adaptation
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