Physiologic basis for feature selection, and decoding techniques

For dexterous motor control

Control of end effectors

Many Applications -> Many Engineering Requirements -> Many Architecture Considerations

Many Applications -> Many Engineering Requirements -> Many Architecture Considerations

But in general: need to isolate, translate, and utilize a neural signal

Many Applications -> Many Engineering Requirements -> Many Architecture Considerations

But in general: need to isolate, translate, and utilize a neural signal

Architecture of a BCI

Architecture of a BCI

BCI Signal Types

Signal	Cell count	Raw Magnitude	Feature Z (depends)	Spatial Specificity	Signal Stability
EEG (non- invasive)	> 1M	~50 uV	3-5	1-5 cm	Long-term?
ECoG (semi- invasive?)	500K	~500 uV	10-20	3-10 mm	Months
Intracortical (invasive)	1-???	10s of mV	Very high	< 300 um	Days

Appropriate modality choice depends on application. Consider subject population. Research/Clinical goals. Stimulation requirements.

Architecture of a BCI

The quest for single units

The quest for single units

The quest for single units

Feature extraction, ECoG and LFPs

Feature extraction, ECoG and LFPs

Spectral Estimation: STFFT Wavelets Band filtering and envelope detection Auto-regressive model

Feature extraction, EEG

Signal spreads as it passes through meat

csp:L1 [0.71]

csp:L2 [0.61]

csp:R2 [0.67]

Feature extraction, EEG

Signal spreads as it passes through meat

1) Correct for spatial spreading

Common Spatial Patterns – Linear combination of electrodes maximizing two class discriminability

csp:L1 [0.71]

csp:L2 [0.61]

csp:R2 [0.67]

Feature extraction, EEG

Signal spreads as it passes through meat

1) Correct for spatial spreading

Common Spatial Patterns – Linear combination of electrodes maximizing two class discriminability

Use of spherical head model as solution to forward model

csp:L1 [0.71]

csp:L2 [0.61]

csp:R2 [0.67]

Feature extraction, EEG

Signal spreads as it passes through meat

1) Correct for spatial spreading

Common Spatial Patterns – Linear combination of electrodes maximizing two class discriminability

Use of spherical head model as solution to forward model

Subject specific MRI as solution to forward model

5 mm

SCALP

SOFT

TISSUE

SKULL

DURA

CORTEX

(d)

csp:L1 [0.71]

csp:L2 [0.61]

csp:R2 [0.67]

Feature extraction, EEG

Signal spreads as it passes through meat

1) Correct for spatial spreading

Common Spatial Patterns – Linear combination of electrodes maximizing two class discriminability

Use of spherical head model as solution to forward model

Subject specific MRI as solution to forward model

5 mm

SCALP

SOFT

TISSUE

SKULL

DURA

CORTEX

(e)

2) Apply same spectral estimation techniques used in ECoG (50 Hz and below) for SMR and SSVEP

Or

Simple LPF for EPs

Architecture of a BCI

Translation of neural signal to one or more continuous variables

Translation of neural signal to one or more continuous variables

Population Vector

 $\hat{\mathbf{d}} = \sum_{i} \mathbf{p}_{i} \left(\frac{r - r_{0}}{r_{\text{max}}} \right)$

Translation of neural signal to one or more continuous variables

Kalman Filter

- $x_{t+1} = Ax_t + w_t$
 - $y_t = Cx_t + q_t$

Bonus: Incorporates effector kinematics

Translation of neural signal to one or more continuous variables

Kalman Filter

- $x_{t+1} = Ax_t + w_t$
 - $y_t = Cx_t + q_t$

Estimate $\hat{x}_{t|t-1} = A\hat{x}_{t-1}$ $P_{t|t-1} = AP_{t-1}A^T$ Update $K_t = P_{t|t-1}C^T (CP_{t|t-1}C^T + Q)^{-1}$ $\hat{x}_t = \hat{x}_{t|t-1} + K_t (y_t - C\hat{x}_{t|t-1})$ $P_t = (I - K_tC) P_{t|t-1}$

Bonus: Incorporates effector kinematics

Many Others: Neural Networks, ARMA Models, etc

Decoding, ECoG

Translation of neural signal to one or more continuous variables, High SNR allows (causes ☺) us to be lazy.

Decoding, ECoG

Translation of neural signal to one or more continuous variables, High SNR allows (causes ☺) us to be lazy.

dy/dt = (x-mu) / std

Decoding, EEG

Much harder computational problem, because of low SNR Neural signal typically translated to discrete variable with pre-defined (and pre-trained) number of states

An Inherent Problem

The Underlying Model

Closed-loop decoder adaptation

