Computing in carbon

Basic elements of neuroelectronics

- -- membranes
- -- ion channels
- -- wiring

Elementary neuron models

- -- conductance based
- -- modelers' alternatives

Wires

- -- signal propagation
- -- processing in dendrites

Wiring neurons together

- -- synapses
- -- long term plasticity
- -- short term plasticity

Equivalent circuit model

Membrane patch

The passive membrane

$$C\frac{dV}{dt} = -\frac{V}{R} - I_{\text{ext}}$$

Movement of ions through ion channels

Energetics: $qV \sim k_B T$ $V \sim 25 mV$

The equilibrium potential

Each ion type travels through independently

Different ion channels have associated conductances.

A given conductance tends to move the membrane potential toward the equilibrium potential for that ion

 $V > E \rightarrow$ positive current will flow outward

 $V < E \rightarrow$ positive current will flow inward

more polarized

 E_{Na}

V

Parallel paths for ions to cross membrane

Several *I-V* curves in parallel:

New equivalent circuit:

Neurons are excitable

Excitability arises from ion channel nonlinearity

- Voltage dependent
- transmitter dependent (synaptic)
- Ca dependent

The ion channel is a cool molecular machine

Persistent conductance

n describes a subunit

- *n* is open probability
- 1 n is closed probability

Transitions between states occur at voltage dependent rates

 $\begin{array}{ll} \alpha_n(V) & \mathsf{C} \xrightarrow{} \mathsf{O} \\ \beta_n(V) & \mathsf{O} \xrightarrow{} \mathsf{C} \end{array}$

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$

Transient conductances

m and *h* have opposite voltage dependences: depolarization increases *m*, activation hyperpolarization increases *h*, deinactivation

Dynamics of activation and inactivation

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$
$$\frac{dm}{dt} = \alpha_m(V)(1-m) - \beta_m(V)m$$
$$\frac{dh}{dt} = \alpha_h(V)(1-h) - \beta_h(V)h$$

We can rewrite:

$$\tau_n(V)\frac{dn}{dt} = n_\infty(V) - n$$

where

$$\tau_n(V) = \frac{1}{\alpha_n(V) + \beta_n(V)}$$
$$n_\infty(V) = \frac{\alpha_n(V)}{\alpha_n(V) + \beta_n(V)}$$

Dynamics of activation and inactivation

Putting it together

Ohm's law: V = IR and Kirchhoff's law

Capacitative Ionic currents Externally applied current

The Hodgkin-Huxley equation

$$C_m \frac{dV}{dt} = -\sum_i g_i (V - E_i) - I_e$$

$$-C_m \frac{dV}{dt} = g_L (V - E_L) + \bar{g}_K n^4 (V - E_K) + \bar{g}_{Na} m^3 h (V - E_{Na})$$

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n$$
$$\frac{dm}{dt} = \alpha_m(V)(1-m) - \beta_m(V)m$$
$$\frac{dh}{dt} = \alpha_h(V)(1-h) - \beta_h(V)h$$

Anatomy of a spike

Na ~ m^3h K ~ m^3h

Anatomy of a spike

Ion channel stochasticity

Microscopic models for ion channel fluctuations

approach to macroscopic description

Transient conductances

Different from the continuous model:

interdependence between inactivation and activation transitions to inactivation state 5 can occur only from 2,3 and 4 k_1 , k_2 , k_3 are *constant*, not voltage dependent

The integrate-and-fire neuron

Like a passive membrane:

$$C_m \frac{dV}{dt} = -g_L (V - E_i) - I_e$$

but with the additional rule that when $V \rightarrow V_T$, a spike is fired and $V \rightarrow V_{reset}$.

 E_L is the resting potential of the "cell".

Exponential integrate-and-fire neuron

The theta neuron

$d\theta/dt = 1 - \cos \theta + (1 + \cos \theta) I(t)$

Ermentrout and Kopell

Kernel f for subthreshold response \leftarrow replaces leaky integrator Kernel for spikes \leftarrow replaces "line"

- determine *f* from the linearized HH equations
- fit a threshold
- paste in the spike shape and AHP

Gerstner and Kistler

Two-dimensional models

The generalized linear model

- general definitions for k and h
- robust maximum likelihood fitting procedure

Truccolo and Brown, Paninski, Pillow, Simoncelli

Dendrites as computational elements:

Passive contributions to computation

Active contributions to computation

Examples

Geometry matters

Injecting current I₀

$$V_m = I_m R_m$$

Current flows uniformly out through the cell: $I_m = I_0/4\pi r^2$ Input resistance is defined as $R_N = V_m(t \rightarrow \infty)/I_0$

$$= R_m/4\pi r^2$$

Linear cables

 r_m and r_i are the membrane and axial resistances, i.e. the resistances of a thin slice of the cylinder

Axial and membrane resistance

For a length L of membrane cable:

$$\begin{array}{c} \mathbf{r_i} \rightarrow \mathbf{r_i} \ \mathsf{L} \\ \mathbf{r_m} \rightarrow \mathbf{r_m} \ / \ \mathsf{L} \\ \mathbf{c_m} \rightarrow \mathbf{c_m} \ \mathsf{L} \end{array}$$

The cable equation

The cable equation

(1)
$$\frac{\partial V_m}{\partial x} = -r_i i_i$$

(2) $\frac{\partial i_i(x)}{\partial x} = -i_m$
 $\frac{\partial i_i(x)}{\partial x} = -i_m$
 $\frac{\partial i_i(x)}{\partial x} = -i_m$
 $\frac{\partial V_m}{\partial x^2} = -r_i \frac{\partial i_i}{\partial x} = r_i i_m.$
 $i_m = i_C + i_{\text{ionic}} = c_m \frac{\partial V_m}{\partial t} + \frac{V_m}{r_m}$
 $\frac{1}{r_i} \frac{\partial^2 V_m(x,t)}{\partial x^2} = c_m \frac{\partial V}{\partial t} + \frac{V_m}{r_m}.$ or $\lambda^2 \frac{\partial^2 V_m}{\partial x^2} = \tau_m \frac{\partial V_m}{\partial t} + V_m$
where $\tau_m = r_m c_m$ Time constant
 $\lambda = \sqrt{\frac{r_m}{r_i}}$ Space constant

General solution: filter and impulse response

Voltage decays exponentially away from source

Current injection at x=0, T $\rightarrow \infty$

0.0

-5

-3

-4

-2

-1

 x/λ

0

1

2

3

→ Electrotonic length
$$\lambda = \sqrt{\frac{r_m}{r_i}}$$

Electrotonic length

Johnson and Wu

→ Electrotonic length
$$\lambda = \sqrt{\frac{r_m}{r_i}}$$

→ Current can escape through additional pathways: speeds up decay → Current can escape through additional pathways: speeds up decay

Johnson and Wu

Properties of passive cables

→ Electrotonic length
$$\lambda = \sqrt{\frac{r_m}{r_i}}$$

→ Current can escape through additional pathways: speeds up decay

→ Cable diameter affects input resistance $R_N = \frac{\sqrt{R_m R_i/2}}{2\pi a^{3/2}}$

→ Electrotonic length
$$\lambda = \sqrt{\frac{r_m}{r_i}}$$

- → Current can escape through additional pathways: speeds up decay
- → Cable diameter affects input resistance $R_N = \frac{\sqrt{R_m R_i/2}}{2\pi a^{3/2}}$
- \rightarrow Cable diameter affects transmission velocity

Conduction velocity

www.physiol.usyd.edu/au/~daved/teaching/cv.html

Finite cables

Active channels

Rall model

$$R_N = \frac{\sqrt{R_m R_i/2}}{2\pi a^{3/2}}$$

Impedance matching:

If
$$a^{3/2} = d_1^{3/2} + d_2^{3/2}$$

can collapse to an equivalent cylinder with length given by electrotonic length

New cable equation for each dendritic compartment

Who'll be my Rall model, now that my Rall model is gone

Genesis, NEURON

London and Hausser, 2005

Enthusiastically recommended references

• Johnson and Wu, *Foundations of Cellular Physiology*, Chap 4 The classic textbook of biophysics and neurophysiology: lots of problems to work through. Good for HH, ion channels, cable theory.

• Koch, Biophysics of Computation

Insightful compendium of ion channel contributions to neuronal computation

• Izhikevich, Dynamical Systems in Neuroscience

An excellent primer on dynamical systems theory, applied to neuronal models

• Magee, *Dendritic integration of excitatory synaptic input*, Nature Reviews Neuroscience, 2000 Review of interesting issues in dendritic integration

London and Hausser, Dendritic Computation, Annual Reviews in Neuroscience, 2005 Review of the possible computational space of dendritic processing