
Entropy and Shannon information 



For a random variable X with distribution p(x), the entropy is 
 
 H[X] =  - Sx p(x) log2p(x)  

 

Information is defined as 
  
 I[X] =  - log2p(x)  

 

Entropy and Shannon information 



  
Typically, “information” = mutual information: 
 how much knowing the value of one random variable r (the response) 
 reduces uncertainty about another random variable s (the stimulus). 
 
 
Variability in response is due both to different stimuli and to noise. 
How much response variability is “useful”, i.e. can represent different messages, 
depends on the noise.  Noise can be specific to a given stimulus. 
 
 

Mutual information 



Information quantifies how independent r and s are: 
 
  I(S;R) = DKL [P(R,S), P(R)P(S)] 

 
      I(S;R) = H[R] – Ss P(s) H[R|s] . 

 

Alternatively: 
 

Mutual information 



 
 Need to know the conditional distribution P(s|r) or P(r|s). 
 
Take a particular stimulus s=s0 and repeat many times to  
obtain P(r|s0). 
Compute variability due to noise: noise entropy 
 
 

Mutual information is the difference between  
the total response entropy and  the mean noise entropy:  
 
      I(S;R) = H[R] – Ss P(s) H[R|s)] . 

 

Mutual information 



Information is symmetric in r and s 

Extremes: 
 
 1. response is unrelated to stimulus: p[r|s] = ?, MI = ? 
 
 2. response is perfectly predicted by stimulus: p[r|s] = ? 

Mutual information 



r+ encodes stimulus +, r- encodes stimulus -  
 

Simple example 

but with a probability of error: 
 P(r+|+) = 1- p 
 P(r-|-) = 1- p 
 
What is the response entropy H[r]? 
 
What is the noise entropy? 
 



Entropy Information 

Entropy and Shannon information 

H[r] = -p+ log p+ – (1-p+)log(1-p+) 

 H[r|s] = -p log p – (1-p)log(1-p) 

When p+ = ½, 



Noise limits information 



Channel capacity 

A communication channel SR is defined by P(R|S) 

I(S;R) = Ss,r P(s) P(r|s) log[ P(r|s)/P(r) ]  

The channel capacity gives an upper bound on 
transmission through the channel: 

C(R|S) = sup I(S;R) 



Source coding theorem 

Perfect decodability through the channel:  

T 

If the entropy of T is less than the channel capacity, then 
T’ can be perfectly decoded to recover T. 
 

S R T’ 
encode transmit decode 



Data processing inequality 

Transform S by some function F(S): 

R 

The transformed variable F(S) cannot contain more 
information about R than S. 

S F(S) 
encode transmit 



How can one compute the entropy  
and information of spike trains? 
 
Entropy: 

Strong et al., 1997; Panzeri et al. 

Discretize the spike train into binary  
words w with letter size Dt, length T. 
This takes into account correlations between 
spikes on timescales TDt.  
 
Compute pi = p(wi), then the naïve entropy is 

Calculating information in spike trains 



Many information calculations are limited by  
sampling: hard to determine P(w) and P(w|s) 
 
Systematic bias from undersampling. 
 
Correction for finite size effects:  

Strong et al., 1997 

Calculating information in spike trains 



Information :  difference between the variability  
driven by stimuli and that due to noise. 
 
Take a stimulus sequence s and repeat many  
times. 
 
For each time in the repeated stimulus, get a  
set of words P(w|s(t)). 
 
Average over s  average over time: 
 
 Hnoise =  < H[P(w|si)] >i. 
 
Choose length of repeated sequence long enough  
to sample the noise entropy adequately.   
 
Finally, do as a function of word length T and 
extrapolate to infinite T. 

Reinagel and Reid, ‘00 

Calculating information in spike trains 



Fly H1: 

obtain information rate of  

~80 bits/sec or 1-2 bits/spike. 

Calculating information in spike trains 



Another example: temporal coding in the LGN (Reinagel and Reid ‘00) 

Calculating information in the LGN 



Apply the same procedure: 

collect word distributions  

for a random, then repeated stimulus. 

Calculating information in the LGN 



Use this to quantify how 

precise the code is, 

and over what timescales 

correlations are important. 

Information in the LGN 



How much information does a single spike convey about the stimulus? 

 

Key idea: the information that a spike gives about the stimulus is the reduction  

in entropy between the distribution of spike times not knowing the stimulus, 

and the distribution of times knowing the stimulus. 

 

The response to an (arbitrary) stimulus sequence s is r(t). 

 

Without knowing that the stimulus was s, the probability of observing a spike 

in a given bin is proportional to    , the mean rate, and the size of the bin. 

 

Consider a bin Dt small enough that it can only contain a single spike. Then in 

the bin at time t, 

 

Information in single spikes 



Now compute the entropy difference: , 

Assuming              ,  and using 

In terms of information per spike (divide by        ):  

Note substitution of a time average for an average over the r ensemble. 

 prior 

 conditional 

Information in single spikes 



Given 

note that: 
• It doesn’t depend explicitly on the stimulus 
• The rate r does not have to mean rate of spikes; rate of any event. 
• Information is limited by spike precision, which blurs r(t), 
 and the mean spike rate.  

Compute as a function of Dt:  

Undersampled for small bins 

Information in single spikes 



Adaptation and coding efficiency 





















1. Huge dynamic range: variations over many orders of magnitude 

Natural stimuli 
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2. Power law scaling: highly nonGaussian 

Natural stimuli 
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Natural stimuli 

1. Huge dynamic range: variations over many orders of magnitude 
 

2. Power law scaling: highly nonGaussian 



In order to encode stimuli effectively, an encoder should match its outputs 
to the statistical distribution of the inputs 

Shape of the I/O function 
should be determined 
by the distribution of 
natural inputs 
 
Optimizes information 
between output and input 

Efficient coding 



Laughlin, ‘81 

Fly visual system 



Contrast varies hugely in time.  
 
Should a neural system optimize 
over evolutionary time or locally?   

Variation in time 



For fly neuron H1, 
determine the input/output 
relations throughout the 
stimulus presentation  

A. Fairhall, G. Lewen, R. R. de Ruyter and W. Bialek (2001) 

Time-varying stimulus representation 



Extracellular in vivo recordings 
of responses to whisker motion 
in rat S1 barrel cortex in the  
anesthetized rat  

M. Maravall et al., (2007) 

Barrel cortex 
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R. Mease,  A. Fairhall and W. Moody, J. Neurosci. 

Single cortical neurons 



Using information to evaluate coding 



As one changes the characteristics of s(t), changes can occur  
 both in the feature and in the decision function  

Barlow ’50s, Laughlin ‘81, Shapley et al, ‘70s, Atick ‘91, Brenner ‘00 

Adaptive representation of information 



Barlow ’50s, Laughlin ‘81, Shapley et al, ‘70s, Atick ‘91, Brenner ‘00 

Feature adaptation 



The information in any given event can be computed as: 

Define the synergy, the information gained from the joint symbol: 

or equivalently, 

Negative synergy is called redundancy. 

Synergy and redundancy 



Brenner et al., ’00. 

In the identified neuron H1, compute information in a spike pair, separated 

by an interval dt: 

Multi-spike patterns 


