
p[r|+] p[r|-] 

<r>+ <r>- 

z 

Role of priors: 

 

Find z by maximizing P[correct] = p[+] b(z) + p[-](1 – a(z)) 

 

Signal detection theory 



 
The optimal test function is the likelihood ratio, 
 
 l(r) = p[r|+] / p[r|-].                    (Neyman-Pearson lemma) 

 

 

Is there a better test to use than r? 

p[r|+] p[r|-] 

<r>+ <r>- 

z 



 
Penalty for incorrect answer: L+, L- 

For an observation r, what is the expected loss? 
 
Loss- = L-P[+|r] 
 
 
Cut your losses: answer + when Loss+ < Loss- 

 

i.e. when             L+P[-|r] < L-P[+|r]. 
 
Using Bayes’,  P[+|r] = p[r|+]P[+]/p(r); 
  P[-|r] = p[r|-]P[-]/p(r); 
 
 l(r) = p[r|+]/p[r|-] >  L+P[-] / L-P[+] .  
 

 Loss+ = L+P[-|r] 

Building in cost 



• Population code formulation 
 

• Methods for decoding: 
  population vector 
  Bayesian inference  
  maximum likelihood 
  maximum a posteriori 
 
• Fisher information 

Decoding from many neurons: population codes 



Cricket cercal cells 



Theunissen & Miller, 1991 

RMS error in estimate 

Population vector 



Cosine tuning: 

Pop. vector: 

Population coding in M1 



The population vector is neither general nor optimal. 
 
“Optimal”:  
 
make use of all information in the stimulus/response distributions 

Is this the best one can do? 



Bayes’ law: 
 
 

likelihood function 

a posteriori distribution 

conditional distribution 

marginal distribution 

prior distribution 

Bayesian inference 



Introduce a cost function, L(s,sBayes); minimize mean cost. 

For least squares cost,  L(s,sBayes) = (s – sBayes)
2 . 

 Let’s calculate the solution.. 

Want an estimator sBayes 

Bayesian estimation 



By Bayes’ law, 
 
 

likelihood function 

a posteriori distribution 

Bayesian inference 



Find maximum of p[r|s] over s 
 
More generally, probability of the data given the “model” 
 
“Model” = stimulus 
 
  assume parametric form for tuning curve 

Maximum likelihood 



By Bayes’ law, 

 

 
likelihood function 

a posteriori distribution 

Bayesian inference 



ML:  s* which maximizes p[r|s] 
 
MAP:  s* which maximizes p[s|r] 
 
Difference is the role of the prior: differ by factor p[s]/p[r] 

MAP and ML 



Comparison with population vector 



Many neurons “voting” for an outcome. 
 
Work through a specific example 
 
• assume independence 
• assume Poisson firing 

Noise model: Poisson distribution 

     

        PT[k] = (lT)k exp(-lT)/k! 

Decoding an arbitrary continuous stimulus 



E.g. Gaussian tuning curves 

Decoding an arbitrary continuous stimulus 

.. what is P(ra|s)?  



Assume Poisson: 

Assume independent: 

Population response of 11 cells with Gaussian tuning curves 

Need to know full P[r|s] 



Apply ML: maximize ln P[r|s] with respect to s 

Set derivative to zero, use sum = constant 

From Gaussianity of tuning curves, 

If all s same  

ML 



Apply MAP: maximise ln p[s|r] with respect to s 

Set derivative to zero, use sum = constant 

From Gaussianity of tuning curves, 

MAP 



Given this data: 

Constant prior 

Prior with mean -2, variance 1 

MAP: 



For stimulus s, have estimated sest 

Bias:  

Cramer-Rao bound: 

Mean square error: 

Variance: 

Fisher information 

(ML is unbiased: b = b’ = 0) 

How good is our estimate? 



Alternatively: 

Quantifies local stimulus discriminability 

Fisher information 



For the Gaussian tuning curves w/Poisson statistics: 

Fisher information for Gaussian tuning curves 



Approximate: 

Thus,  Narrow tuning curves are better 

But not in higher dimensions! 

Are narrow or broad tuning curves better? 

..what happens in 2D? 



Recall d' = mean difference/standard deviation 

Can also decode and discriminate using decoded values. 
 
Trying to discriminate s and s+Ds: 
 
 Difference in ML estimate is Ds  (unbiased) 
 variance in estimate is 1/IF(s). 
 
 

Fisher information and discrimination 



• Tuning curve/mean firing rate 
 

• Correlations in the population 

Limitations of these approaches 



The importance of correlation 

Shadlen and Newsome, ‘98 



The importance of correlation 



The importance of correlation 



Model-based vs model free 

Entropy and Shannon information 


