
Encoding or decoding 



How well can we learn what the stimulus is by looking 
at the neural responses? 
 
We will discuss two approaches: 
 
• devise and evaluate explicit algorithms for extracting  
 a stimulus estimate 
 

• directly quantify the relationship between  
  stimulus and response using information theory   

Decoding 



Let’s start with a rate response, r(t) and a stimulus, s(t).  
 
The optimal linear estimator is closest to satisfying 

Want to solve for K.  Multiply by s(t-t’) and integrate over t: 

The optimal linear estimator 



 produced terms which are simply correlation functions: 

Given a convolution, Fourier transform: 

Now we have a straightforward algebraic equation for K(w): 

Solving for K(t), 
 

The optimal linear estimator 



For white noise, the correlation function Css(t) = s2 d(t), 

So K(t) is simply Crs(t). 
 

 

  

The optimal linear estimator 
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Stimulus reconstruction 



Stimulus reconstruction 



Stimulus reconstruction 



Yang Dan, UC Berkeley 

Reading minds: the LGN 



Other decoding approaches 



Britten et al. ‘92: measured both behavior + neural responses 

Binary choice tasks 



Behavioral performance 



Discriminability:    d’ = ( <r>+ - <r>- )/ sr 

Predictable from neural activity? 



p(r|+) p(r|-) 

<r>+ <r>- 

z 

Decoding corresponds to comparing test, r, to threshold, z. 

 a(z) = P[ r ≥ z|-]  false alarm rate, “size” 

 b(z) = P[ r ≥ z|+]  hit rate, “power” 

 
Find z by maximizing P[correct] = p[+] b(z) + p[-](1 – a(z)) 

 

Signal detection theory 



summarize performance of test for different thresholds z 

Want b  1, a  0. 

ROC curves 



Threshold z is the result from the first presentation 

The area under the ROC curve corresponds to P[correct] 

ROC: two alternative forced choice 



 

The optimal test function is the likelihood ratio, 

 

  l(r) = p[r|+] / p[r|-]. 

 
(Neyman-Pearson lemma) 

 

 

 

 

Then 

 

 l(z) = (db/dz)  / (da/dz)  =  db/da  

 

i.e. slope of ROC curve 

Recall a(z) = P[ r ≥ z|-]  false alarm rate, “size” 

 b(z) = P[ r ≥ z|+]  hit rate, “power” 

Is there a better test to use than r? 



 
If p[r|+] and p[r|-] are both Gaussian, one can show 
that 
 
 P[correct] = ½ erfc(-d’/2). 
 
To interpret results as two-alternative forced choice, need 
simultaneous responses from  
“+ neuron” and from “– neuron”.  
 
Simulate “- neuron” responses from same neuron in response 
to – stimulus. 

 
Ideal observer: performs as area under ROC curve. 

The logistic function 



Again, if  p[r|-] and p[r|+] are Gaussian, 
 and  p[+] and p[-] are equal, 
 
          P[+|r] = 1/ [1 + exp(-d’ (r - <r>)/ s)]. 
 
 d’ is the slope of the sigmoidal fitted to P[+|r] 

More d’ 



Close correspondence between neural and behaviour.. 

 

Why so many neurons?  Correlations limit performance. 

Neurons vs organisms 



p[r|+] p[r|-] 

<r>+ <r>- 

z 

Role of priors: 

 

Find z by maximizing P[correct] = p[+] b(z) + p[-](1 – a(z)) 

 

Priors 



Classification of noisy data: single photon responses 
   

The wind or a tiger? 

Rieke 



Classification of noisy data: single photon responses 
   

I 

P(I|signal) 

P(I|noise) 

Nonlinear separation of signal and noise 

Rieke 
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Nonlinear separation of signal and noise 

Classification of noisy data: single photon responses 
   

I 

P(I|signal) P(signal) 

P(I|noise) P(noise) 

Rieke 



How about costs? 

I 

P(I|signal) P(signal) 

P(I|noise) P(noise) 



 

Penalty for incorrect answer: L+, L- 

For an observation r, what is the expected loss? 

 

Loss- = L-P[+|r] 

 

 

Cut your losses: answer + when Loss+ < Loss- 

 

i.e.                  L+P[-|r] < L-P[+|r]. 

 

Using Bayes’,  P[+|r] = p[r|+]P[+]/p(r); 

   P[-|r] = p[r|-]P[-]/p(r); 

 

 l(r) = p[r|+]/p[r|-] >  L+P[-] / L-P[+] .  
 

 Loss+ = L+P[-|r] 

Building in cost 



For small stimulus differences  s and s + ds 

 like comparing 

to threshold 

Relationship of likelihood to tuning curves 



• Population code formulation 
 

• Methods for decoding: 
  population vector 
  Bayesian inference  
  maximum likelihood 
  maximum a posteriori 
 
• Fisher information 

Decoding from many neurons: population codes 



Jacobs G A et al. J Exp Biol 2008;211:1819-1828 
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Cricket cercal cells 



Cricket cercal cells 



Theunissen & Miller, 1991 

RMS error in estimate 

Population vector 



Cosine tuning curve of a motor cortical neuron 

Hand reaching direction 

Population coding in M1 

r0 



Cosine tuning: 

Pop. vector: 

For sufficiently large N, 

is parallel to the direction of arm movement 

Population coding in M1 



Cosine tuning: 

Pop. vector: 

Population coding in M1 

Difficulties with this coding scheme? 



The population vector is neither general nor optimal. 
 
“Optimal”:  
 
make use of all information in the stimulus/response distributions 

Is this the best one can do? 



Bayes’ law: 
 
 

likelihood function 

a posteriori distribution 

conditional distribution 

marginal distribution 

prior distribution 

Bayesian inference 



Introduce a cost function, L(s,sBayes); minimize mean cost. 

For least squares cost,  L(s,sBayes) = (s – sBayes)
2 ; 

 solution is the conditional mean. 

Want an estimator sBayes 

Bayesian estimation 



By Bayes’ law, 
 
 

likelihood function 

a posteriori distribution 

Bayesian inference 



Find maximum of P[r|s] over s 
 
More generally, probability of the data given the “model” 
 
“Model” = stimulus 
 
  assume parametric form for tuning curve 

Maximum likelihood 



By Bayes’ law, 

 

 
likelihood function 

a posteriori distribution 

Bayesian inference 



Theunissen & Miller, 1991 

RMS error in estimate 

Population vector 



ML:  s* which maximizes p[r|s] 
 
MAP:  s* which maximizes p[s|r] 
 
Difference is the role of the prior: differ by factor p[s]/p[r] 

For cercal data: 

MAP and ML 



Work through a specific example 
 
• assume independence 
• assume Poisson firing 

Noise model: Poisson distribution 

     

 PT[k] = (lT)k exp(-lT)/k! 

Decoding an arbitrary continuous stimulus 



E.g. Gaussian tuning curves 

Decoding an arbitrary continuous stimulus 



Assume Poisson: 

Assume independent: 

Population response of 11 cells with Gaussian tuning curves 

Need to know full P[r|s] 



Apply ML: maximize ln P[r|s] with respect to s 

Set derivative to zero, use sum = constant 

From Gaussianity of tuning curves, 

If all s same  

ML 



Apply MAP: maximise ln p[s|r] with respect to s 

Set derivative to zero, use sum = constant 

From Gaussianity of tuning curves, 

MAP 



Given this data: 

Constant prior 

Prior with mean -2, variance 1 

MAP: 



For stimulus s, have estimated sest 

Bias:  

Cramer-Rao bound: 

Mean square error: 

Variance: 

Fisher information 

(ML is unbiased: b = b’ = 0) 

How good is our estimate? 



Alternatively: 

Quantifies local stimulus discriminability 

Fisher information 



For the Gaussian tuning curves w/Poisson statistics: 

Fisher information for Gaussian tuning curves 



Approximate: 

Thus,  Narrow tuning curves are better 

But not in higher dimensions! 

Are narrow or broad tuning curves better? 

..what happens in 2D? 



Recall d' = mean difference/standard deviation 

Can also decode and discriminate using decoded values. 
 
Trying to discriminate s and s+Ds: 
 
 Difference in ML estimate is Ds  (unbiased) 
 variance in estimate is 1/IF(s). 
 
 

Fisher information and discrimination 



• Tuning curve/mean firing rate 
 

• Correlations in the population 

Limitations of these approaches 



The importance of correlation 

Shadlen and Newsome, ‘98 



The importance of correlation 



The importance of correlation 



Model-based vs model free 

Entropy and Shannon information 



For a random variable X with distribution p(x), the entropy is 
 
 H[X] =  - Sx p(x) log2p(x)  

 

Information is defined as 
  
 I[X] =  - log2p(x)  

 

Entropy and Shannon information 



  
Typically, “information” = mutual information: 
 how much knowing the value of one random variable r (the response) 
 reduces uncertainty about another random variable s (the stimulus). 
 
 
Variability in response is due both to different stimuli and to noise. 
How much response variability is “useful”, i.e. can represent different messages, 
depends on the noise.  Noise can be specific to a given stimulus. 
 
 

Mutual information 



Information quantifies how independent r and s are: 
 
  I(s;r) = DKL [P(r,s), P(r)P(s)] 

 
      I(s;r) = H[P(r)] – Ss P(s) H[P(r|s)] . 

 

Alternatively: 
 

Mutual information 



 
 Need to know the conditional distribution P(s|r) or P(r|s). 
 
Take a particular stimulus s=s0 and repeat many times to  
obtain P(r|s0). 
Compute variability due to noise: noise entropy 
 
 

Mutual information is the difference between  
the total response entropy and  the mean noise entropy:  
 
      I(s;r) = H[P(r)] – Ss P(s) H[P(r|s)] . 

 

Mutual information 



Information is symmetric in r and s 

Examples: 
 
 response is unrelated to stimulus: p[r|s] = ?, MI = ? 
 
 response is perfectly predicted by stimulus: p[r|s] = ? 

Mutual information 



r+ encodes stimulus +, r- encodes stimulus -  
 

Simple example 

but with a probability of error: 
 P(r+|+) = 1- p 
 P(r-|-) = 1- p 
 
What is the response entropy H[p]? 
 
What is the noise entropy? 
 



Entropy Information 

Entropy and Shannon information 

H[p] = -p+ log p+ – (1-p+)log(1-p+) 

H[P(r|s)] = -p log p – (1-p)log(1-p) 

When p+ = ½, 


