CSE/NB 528
Lecture 13: From Unsupervised to

Reinforcement Learning
(Chapters 8-10)

Today’s Agenda: All about Learning

+ Unsupervised Learning
< Sparse Coding
< Predictive Coding

+ Supervised learning
< Perceptrons and Backpropagation

+ Reinforcement Learning
<~ TD and Actor-Critic learning
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Recall from Last Time: Linear Generative Model

Suppose input u was
generated by a linear
superposition of causes vy,
Vs, ..., V| With basis
vectors (or “features”) g;

Causes v

Generative
model

u=> g,v; +noise=Gv+n
i

A

Data u . .
(Assume noise is Gaussian

white noise with mean zero)
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Bayesian approach

+ Find v and G that maximize posterior:
plv |u;G] =k plu|v;G]p[v;G]
+ Equivalently, find v and G that maximize log posterior:

F(v,G) =log p[u|Vv;G]+ log p[v;G] + logk

u=Gv+n / /

log of Gaussian Va. (I;n epen erTG
log N (u;Gv, I) pLv; ]—1:[p[va, ]

:_%(U_GV)T(U_G\IHC log p[v;G]=§a]Iogp[va;G]

Prior for individual causes (what
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should this be?)  *




What do we know about the causes v?

+ Idea: Causes independent: only a few of them will be active
for any input
< v, will be 0 most of the time but high for a few inputs
< Suggests a sparse distribution for p[v,;G]: peak at 0 but
with heavy tail (also called super-Gaussian distribution)
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Examples of Prior Distributions for Causes

Possible prior Log prior
distributions

g(v)=-1v|
exponential

™ sparse

\

g(v) = —log(1+v?)

:\\Cauchy
AN
N

plv;Gl=c-] Jexp(g(v.))

log p[v;G]=>"g(v,) +c
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Finding the optimal v and G

+ Want to maximize:
F(v,G) =log p[u|Vv;G]+ log p[v;G]+ logk
:—%(U—GV)T(U—GV)+Zg(va)+ K

+ Alternate between two steps:
< Maximize F with respect to v keeping G fixed

» How?
< Maximize F with respect to G, given the v above

» How?
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Estimating the causes v for a given input

Derivative of
A/ g

Gradient dv dF T ,
ascent Eocd_v:G (u-Gv)+g'(v)

Reconstruction
(prediction) of u

dv - , Firing rate dynamics
TE =G (u _TGV) +9 T(V) (Recurrent network)

Error Sparseness constraint
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Sparse Coding Network for Estimating v

Tz_\t/ =G'(U-GV)+g'(V)

GT/]\u J{G

Error (U—GV) GV Prediction

Corrected
Estimate

[Suggests a role for feedback pathways in the cortex (Rao & Ballard, 1999)]
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Learning the Synaptic Weights G

A%

GT/[\u J(G

Error (U—GV) GV Prediction

Gradient dG dF
oC

ascent gt . dG (U=-Gv)v'
Learning dG T Hebbian!
rule Ts E =(Uu-Gv)v (similar to Oja’s rule)
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Result: Learning G for Natural Images

HENEEASNMENEN  Eachsquare isacolumn

g; of G (obtained by
collapsing rows of the
square into a vector)

Almost all the g;
represent local edge

features
Any image patch u
can be expressed as:

SEEENEEREANE -y, -G
EEEN=ZZMSNENE i
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Sparse Coding Network is a special case of
Predictive Coding Networks

Feedforward
Error Signal
Inout @ Predictive
P = Estimator
Prediction
(Feedback) (Rao, Vision Research, 1999)
Sensory Feedforward
Error Gain [~ Synapses
Error G T ut
Internal
Input‘-@g ;y,,:;,scs *  Representation
(Neural
Feedback Responses)
U Prediction




Predictive Coding Model of Visual Cortex

.
\J /)
N\
SV,

—>
LGN Vi NS R
(S
Feedforward
Error Signal Error Signal Error Signal
| ] L
I i— > Predictive Predictive
HpH =/ Estimator Estimator

i [ 1

[ -

Prediction Prediction Prediction

(Feedback)
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(Rao & Ballard, Nature Neurosci., 1999)

Predictive coding model explains contextual effects

Monkey Primary Visual Cortex

] ;i AR
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(Zipser et al., J. Neurosci., 1996)

Model

Homogeneous
Random Texture 0.08

I | —— Orientation Contrast
|
0.06" | Homogeneous
a |
3 |
I | 0.04- |
> |

Orientation Contrast

o r— 002 |

= |
— 0!
— 0 10 20 30 40 50 60 70

————

Response

Time (number of iterations)

Increased activity for non-homogenous
input interpreted as prediction error
(i.e., anomalous input): center is not
predicted by surrounding context.




Center
predictable 100
from pixels

Surround

100 pixels
Vertical (90°)
1
Scale —
.5 0.8 968x968 I
3 06
>
ko4
=
O 02
0
~50 0 50

Distance (in pixels)

1
08
0.6
04
02

[}
-50

Horizontal (0")
1

— ¢
o 08
0.6
04
0.2,
0
0 50 -50

Distance (in pixels)

Diagonal (135")

|

— 1358
- 450

0 50

Distance (in pixels)

(Rao & Ballard, Nature Neurosci., 1999)

What if your data comes with not just inputs but
also outputs?

Enter...Supervised Learning
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Supervised Learning

+ Two Primary Tasks
1. Classification
» Inputs uy, u,, ... and discrete classes C,, C,, ..., C,
» Training examples: (u,, C,), (u,, C,), etc.
» Learn the mapping from an arbitrary input to its class
» Example: Inputs = images, output classes = face, not a face

2. Regression
Inputs u,, U,, ... and continuous outputs vy, Vs, ...
Training examples: (input, desired output) pairs
Learn to map an arbitrary input to its corresponding output
Example: Highway driving

Input = road image, output = steering angle

A

v 9 9
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The Classification Problem

e denotes output of +1 (faces)
Faces
. o denotes output of -1 (other)

Other objects

/

Idea: Find a separating hyperplane (line in this case)
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Neurons as Classifiers: The “Perceptron”

+ Artificial neuron:
< m binary inputs (-1 or 1) and 1 output (-1 or 1)

< Synaptic weights w;; V. =0 WU —u
< Threshold y; ! (Z iU 4

OKx)=+1lifx>0and-1ifx<0

Wi»  Weighted Sum  Threshold

Inputs u;  w;, Output v;
]
((lor+1) = > Z (-1 or+1)
Wi,
K
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What does a Perceptron compute?

+ Consider a single-layer perceptron
< Weighted sum forms a linear hyperplane (line, plane, ...)

ZW”UJ' — 1, =0
j

< Everything on one side of hyperplane is in class 1 (output =
+1) and everything on other side is class 2 (output = -1)

= Any function that is linearly separable can be computed by
a perceptron
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Linear Separability

+ Example: AND function is linearly separable
waANDb=1ifandonlyifa=1landb=1

Linear hyperplane - (1.1) v
yperp \_VP\' u=15
N
N w =1 w,=1
u 1 2
-1 1 87
e -1 0 Uy U,
e +1 output
e -1 output Perceptron for AND
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What about the XOR function?

U U, XOR ® +1 output
e -1 output
1]-1] +1
111 -1
1)1 -1
111 +1

Can a straight line separate the +1 outputs from
the -1 outputs?
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Multilayer Perceptrons

+ Removes limitations of single-layer networks
<~ Can solve XOR

+ An example of a two-layer perceptron that computes XOR

4+ Outputis+lifandonlyifx+y +20(-x-y—-15)>-1
R.Rao, 528: Lecture 13 (Inputs x and y can be +1 or -1) 23

What if you want to approximate a
continuous function (i.e., regression)?

Bl

oy

Can a network learn to drive?
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Example Network

Sharp Straight Sharp
Left Ahead Right
Steering angle — 30 Output
Units
Desired Output:
d=[d; d, ... dg]
Current image — 30x32 Sensor
Input Retina

R. R0, 528: Lecture 13 Input u = [u; U, ... uge] = image pixels

Sigmoid Networks

Output v =g(w'u) = g(Zwiui) Sigmoid output function:

a) =
W g( ) 1+e™®
Input nodes ) T@Jﬁ
u=(u; U, Uy)T' | 3

Sigmoid is a non-linear “squashing” function: Squashes input to
be between 0 and 1. Parameter 3 controls the slope.

R. Rao, 528: Lecture 13 26




Multilayer Sigmoid Networks

Vv, = g(ZWjig(Zijuk))

/

Input u = (u; U, ... uE)T
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Output v = (v, V, ... v;)T; Desired =d

How do we learn these weights?

27

Backpropagation Learning: Uppermost layer

Vi = g(ZWjin)

uk
Learning rule for hidden-output weights W:
dE
Wi > W —¢ dW- {gradient descent}
ji
dE

28




Backpropagation: Inner layer (chain rule)

Minimize output error:

E(W,w) =2 3 (d, ~v, )

Learning rule for input-hidden weights w:

W — W, —g—dE But: aE _dE o,
90T T dw dwy  dx; dw,

{chain rule}

dw

€ _ {_Z(dim _Vim)gl(ZWjiX;'n)Wji ]{g’(zwkju?)u?}

Pole Balancing and Backing up a Truck

(courtesy of Keith Grochow, CSE 599)

V
+ Neural network learns to balance a pole on a cart pole

» System:
* 4 state variables: Xert, Vearts Opoter Vpole
» 1 input: Force on cart
» Backprop Network:
» Input: State variables
+ Output: New force on cart

« NN learns to back a truck into a loading dock
» System (Nyugen and Widrow, 1989):
+ State variables: X, Yeanr Ocan =)
* 1input: NeW Ogieering Lo =
» Backprop Network: s -
* Input: State variables T
* Output: Steering angle Oeering

Xcart

9pole
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../CSE 473-06/NN demo.exe
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Humans (and animals in general) don’t get exact
supervisory signals (commands for muscles) for
learning to talk, walk, ride a bicycle, play the piano,
drive, etc.

We learn by trial-and-error
(with hints from others)

Might get “rewards and punishments” along the way

Enter..Reinforcement Learning
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The Reinforcement Learning “Agent”

D
g Agent
State Reward Action
Environment «

R. Rao, 528: Lecture 13 32




Early Results: Pavlov and his Dog

+ Classical (Pavlovian)
conditioning experiments

+ Training: Bell >Food

+ After: Bell - Salivate

+ Conditioned stimulus % T
(bell) predicts future A WL

reward (food) 1

L ey smmenes ‘

(ht.t;.)://em.ployees.csbsju.edu/tcreed/pb/pdoganim.html)
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Predicting Delayed Rewards

+ Reward is typically delivered at the end (when you know
whether you succeeded or not)

+ Time: 0 <t < T with stimulus u(t) and reward r(t) at each
time step t (Note: r(t) can be zero at some time points)

+ Key Idea: Make the output v(t) predict total expected future
reward starting from time t

v(t) = <th r(t+ r)>

=0
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Learning to Predict Delayed Rewards

+ Use a set of modifiable weights w(t) and predict based on all
past stimuli u(t):

v(t) = Zt: w(z)u(t—7)

+ Would like to find the weights (or filter) w(z) that minimize:

T= 2
(Zt: r(t+r) _V(t)j (Can we minimize this using
=0

‘ Yes, BUT...not yet available are the future rewards
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Temporal Difference (TD) Learning

+ Key ldea: Rewrite squared error to get rid of future terms:

(Tz_t: rit+7) —v(t)j = (r(t) +T_th1r(t +1+7) —v(t)j

=0 7=0

~ (r(t) +v(t+1) —v(t))2 Minimize this using
gradient descent!
+ Temporal Difference (TD) Learning:

)

A

W(z) > W(z)+e[rt)+v(t+1) —v()]u(t—7)

Expected future reward  prediction
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Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

before after

A SR

ol T I

o—— T —/\_
5 :

v f_ \_

4 14 -1 R

2

1 Av A

; O S N
0 _ F i

100 t 200 o100 200 0 100 200
Prediction error & for each time step t t

(over many trials)
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Possible Reward Prediction Error Signal in the
Primate Brain

Dopaminergic cells in Ventral Tegmental Area (VTA)

Reward Prediction error? [r(t) +v(t+1) —v(t)]

50 / ..
Hz | 93 | ‘ Before Training

late o
sibns bl bt bhis,  After Training
-0.5 0 1(s) 0 t(s) 0.8
stimulus J / reward \
No error
[0+v(t+1)—v(t)] v(t) = r(t) +v(t+1)

[r@)+v(t+1)-v(t)]=0
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More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

reward
,mLm,.mem

no reward

-1 0 t(s) 1 \ 2

Negative error

rt)=0,v(t+1) =0

Reward predicted
/ but not delivered

[r(t)+v(t+1)—v(t)] =—v(t)

R. Rao, 528: Lecture 13
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That’s great, but how does
all that math help me get
food in a maze?

R. Rao, 528: Lecture 13
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Selecting Actions when Reward is Delayed

States: A, B, or C

|€‘ 0 Possible actions at
\_‘ B 2C any state: Left (L) or
0 | Right (R)

A

| | If you randomly

¢ choosetogo LorR

(random “policy”),
enter what is the expected
value v of each state?
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Policy Evaluation

!€‘ Q| Forrandom policy:
\Q‘ Bl \%C V(B)=%-0+%~5=2_5
A

1 1

V(C)==-2+>-0=1
©) )

T v(A) ZE-V(B)+1~V(C) =1.75
enter 2 2
Can learn value of locations

Location, action) = new location . .
( ) using TD learning:

(u,a) = u’

Let value of location N
2] = waight wiu) w(u) = w(u) +e[r, (u)+v(u')—v(u)]
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Maze Value Learning for Random Policy

wW(A) w(B) w(C)

w 2.5 A =

| T

) 15 30 0 15 30 0 5 30

trial trial trial
(For all three,

Once | know the values, | can pick the action e=0.5)
that leads to the higher valued state!

e ‘f

“‘."\'&\
4 43
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Selecting Actions based on Values

Values act as

2.5 5 1 Q| surrogate immediate
\_‘ B 2C rewards > Locally
0 |

optimal choice leads
to globally optimal

—
|A| policy (for “Markov”

II\ environments)
Related to Dynamic
enter Programming in CS

(see appendix in text)
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Actor-Critic Learning

+ Two separate components: Actor (maintains policy) and
Critic (maintains value of each state)

1. Critic Learning (“Policy Evaluation™):
Value of state u = v(u) = w(u)

w(u) > w(u)+e[r,(u)+v(u')—v(u)] (sameasTD rule)

2. Actor Learning (‘“Policy Improvement™):

P(a;u) = (M) yse this to select an action a
> exp(/Q,(u)) at state u
b

For all a’:

Qa' (U) - Qa' (U) + g[ra (U) +V(ul) _V(u)](éaa' - P(al ’ U))
3. Interleave 1 and 2

R. Rao, 528: Lecture 13
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Actor-Critic Learning in the Maze Task

b= 5

A
W

Probability of going Left at a location

=
£0-5 u=A u=B u==C_C
o

0 50 100 0 50 100 0 50 100
trial trial trial
R. Rao, 528: Lecture 13
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(from

Agent
observation X reward R action A
(angles of joints) J(body movement J(turning direction
per step) of the joints)

Environment

R. Rao, 528: Lecture 13
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Things to do:

Finish homework 3
Work on group project

Thanks, dopamine! |§

e ‘f’

it

R. Rao, 528: Lecture 13
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