CSE/NB 528
Final Lecture: All Good Things Must...

Course Summary

® Where have we been?
® Course Highlights

® Where do we go from here?
® Challenges and Open Problems

® Further Reading
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What is the neural code?
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What is the nature of the code? S S S S —
. oy . 1 i H Cell B
Representing the spiking output: [ § — ] conn

single cells vs populations ° ’ e * ®
rates vs spike times vs intervals
What features of the stimulus does the neural system represent?
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Encoding and decoding neural information

Encoding: building functional models of neurons/neural
systems and predicting the spiking output given the stimulus

Decoding: what can we say about the stimulus given
what we observe from the neuron or neural population?
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Key concepts: Poisson & Gaussian

Spike trains are variable

Models are probabilistic

Deviations are close to independent
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Highlights: Neural Encoding

stimulus X(t)

spike-triggering stimulus features

multidimensional
decision function

spiking output p(t)
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Highlights: Finding the feature space of a
neural system
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Highlights: Finding an interesting tuning curve
P(s) P(s | spike) P(s|spike)
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Decoding: Signal detection theory
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Decoding corresponds to comparing test to threshold.

o(z) =P[r=>z]|-]
B(z) =P[r2z]|+]
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false alarm rate, “size”
hit rate, “power”

Highlights: Neurometric curves
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Decoding from a population

e.g. cosine tuning curves
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More general approaches: MAP and ML

MAP: s* which maximizes p[s|r]

ML:

s* which maximizes p[r|s]

Difference is the role of the prior: differ by factor p[s]/p[r]

For cercal data:
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Excitability is due to the properties of ion channels

channel

« Voltage dependent

« transmitter dependent (synaptic)
» Ca dependent

channel
closed

. channel
open
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Highlights: The neural equivalent circuit
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Simplified neural models

A sequence of neural models of increasing complexity
that approach the behavior of real neurons

Integrate and fire neuron:
subthreshold, like a passive membrane
spiking is due to an imposed threshold at V;

Spike response model:
subthreshold, arbitrary kernel
spiking is due to an imposed threshold at V;
postspike, incorporates afterhyperpolarization

Simple model:
complete 2D dynamical system
spiking threshold is intrinsic

have to include a reset potential 17

Simplified models: integrate-and-fire

Ie
Ie \
20 l Integrate-and-
—> Icm 8L Fire Model
= E

L
0
dv s
T :_(\/_EL)+IeRm Z 0
dt =
IfVv> Vihreshold 2 Spike ?:‘-6:
Then reset: V =V, 3 [/\ /\ VAVA
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Simplified models: spike response model
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Highlights: Dendritic computation

COINCIDENCE

DETECTION
Filtering
Shunting (aaDNOTE OR_.
Delay lines TR
Information segregation
Synaptic scaling HTTENUATION

Direction selectivity

SEGREGATION,
AMPLIFICATION
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Highlights: Compartmental models

Neuronal structure Vﬂ
can be modeled é ---------
using electrically
coupled
compartments {\ N
\
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Connecting neurons: Synapses

Neurotransmitter
Molecules

Receptor @
Lo fXSynapse

Presynaptic spikes cause neurotransmitters to cross the
cleft and bind to postsynaptic receptors, allowing ions to
flow in and change postsynaptic potential
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EPSPs and IPSPs
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Modeling Networks of Neurons

output v

w

input

rd—V:—v+ F(Wu+Mv)

dt

Output  Decay Input  Feedback
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Highlights: Unsupervised Learning

® For linear neuron: vy = WTu = uTW

® Basic Hebb Rule: d_W_

® Average effect over many inputs:  4opp rule performs principal

dw component analysis (PCA)
7, —— =(uv) =Qw W e 2l
dt ¥l
® Qs the input correlation matrix:
Q= <uuT>
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Highlights: Generative Models

Mathematical
derivations

N7

Droning lecture  Lack of sleep
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Highlights: Generative Models and the
Connection to Statistics

Unsupervised learning = learning the hidden causes of input data

p[v;G] Causes v p[v|u;G] , G=(m,0))

rior osterior £
(prior) (p ) @‘l/ Causes of
h clustered
Generative Use EM data
model algorithm for T2
learning the
parameters G

plulv;G]  Datau
(data likelihood)
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Highlights: Supervised Learning:
Neurons as Classifiers

Perceptron:
Wi»  Weighted Sum  Threshold
Inputs u;  w;, Output v,
(-lor+1) = > E > .J- (-1 or +15
Wis
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([ ] ([ ]
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Highlights: Supervised Learning:
Regression

Backpropagation for Multilayered Networks
Vim = g(zwijg(ZijulT))
Finds W and w that minimize errors:

l m m
E ij’ij):EZ(di —V )2

mi R Desired output

Example: Truck backer upper
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Highlights: Reinforcement Learning

® Learning to predict delayed %‘

rew ard S (TD |eaming): (ht?;;//;employees.csbsju.edu/tcreedlpblpdoganim.htlr;ﬂ)
wW(7) >W(7)+e[rt)+v(t+1)—-v®)]Jut—7)

hd Actor_—_Critic Learning: 2.5 5 11
® Critic learns value of each B 5C
state using TD learning \gli

® Actor learns best actions +«—A
based on value of next state W
(using the TD error)
' enter
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The Future: Challenges and Open Problems

® How do neurons encode information?
® Topics: Synchrony, Spike-timing based learning, Dynamic
synapses
® How does a neuron’s structure confer computational
advantages?

® Topics: Role of channel dynamics, dendrites, plasticity in
channels and their density

¢ How do networks implement computational principles
such as efficient coding and Bayesian inference?
® How do networks learn “optimal” representations of their
environment and engage in purposeful behavior?
® Topics: Unsupervised/reinforcement/imitation learning
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Further Reading (for the summer and
beyond)

¢ Spikes: Exploring the Neural Code, F. Rieke
et al., MIT Press, 1997

® The Biophysics of Computation, C. Koch,
Oxford University Press, 1999

® Large-Scale Neuronal Theories of the Brain,
C. Koch and J. L. Davis, MIT Press, 1994

® Probabilistic Models of the Brain, R. Rao et
al., MIT Press, 2002

¢ Bayesian Brain, K. Doya et al., MIT Press,
y
2007

¢ Reinforcement Learning: An Introduction, R.
Sutton and A. Barto, MIT Press, 1998
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Next meeting: Project presentations!

® Project presentations will be on Monday, June 10,
10:30am-12:20pm in the same classroom

¢ Keep your presentation short: ~8 slides, 8 mins/group
¢ Slides:
® Bring your slides on a USB stick to use the class
laptop
OR
® Bring your own laptop if you have videos etc.

® Projects reports (10-15 pages total) due by midnight
Tuesday, June 11 (by email to both Adrienne and Raj)
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Have a
great
summer!
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