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Exercises

Chapter 7

1. a) Consider network activities v(�) that are steady-state solutions of
equation 7.36, satisfying

v(�) = "
h(�) + Z �=2��=2d�0� (��0 + �1 cos(2(� � �0)))v(�0)#+ ; (1)

in response to input h(�) = Ac(1 � � + � cos(2�)) as in equation 7.37.
Assuming that v(�) is symmetric about � = 0, show that v(�) takes
either the form

v(�) = � [cos(2�) � cos(2�C)]+ (2)

or the form

v(�) = � cos(2�) + v0 : (3)

In the case of equation 2, which applieswhen �C < �=2 and forwhich�C defines the width of the orientation tuning curve, by calculating
the integral Z �=2��=2 d�0� (��0 + �1 cos(2(� � �0))v(�0) ;
show that � and �C must satisfy the consistency conditions� = Ac�

1 � �1 (�C � sin(4�C)=4) =�
cos(2�C) = �0� (sin(2�C) � 2�C cos(2�C))� (4)

(1 � �)�  
1 � �1�  �C � sin(4�C)

4

!! :
b) In the case of equation 3, calculate � and v0.

c) For values �0 = 7:3, �1 = 11, c = 1, and A = 40 Hz, use thematl ab® function fzero to find the value of �C that satisfies the
consistency condition in equation 4 as a function of � for 0 < � � 1.
For � = 0:1 and c = 0:1; 0:2; 0:4, and 0:8, solve for �, and thereby
reproduce figure 7.10B. Repeat the plots for �1 = 0. At what value
of � does �C fall below �=2. This corresponds to a model in which
feedforward orientation tuning is sharpened only by inhibition, and
the model lacks contrast invariant tuning.

d) Numerically integrate equation 7.36 for the sets of parameters in
(c) to confirm your results. Use 100 neurons with preferred values
evenly spaced between ��=2 and �=2.
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e) Plot �C � sin(4�C)=4 for 0 � �C � �=2. What is its maximum
value? As �! 0 (so that (1 � �)=�! 1), calculate (from equation 4)
a condition on �1 that ensures there will always be a solution with�C < �=2. This defines a marginal phase in which the recurrent
connections create a tuned output even from untuned input, and it
constitutes what is called a continuous attractor.

2. A Hopfield associative memory network has activities for individual
units, va for a = 1; 2; : : : ;N (or collectively v), that take values of either+1 or �1, and are updated at every discrete time step of the network
dynamics by the rule

va(t + 1) = sgn

0BBBBB� NX
a0=1Maa0va0(t)1CCCCCA ; (5)

where

sgn(z) = ( +1 if z � 0�1 if z < 0 :
Here M is a matrix constructed from P “memory” vectors vm (m =
1; 2; : : :P), also composed of elements that are either+1 or�1, through
the sum of outer products

Maa0 = (1 � Æaa0 ) PX
m=1 vma vma0 : (6)

Note that the diagonal elements ofM are set to zero by this equation.
Consider a 100-element network (N = 100). Construct P memory
states by randomly assigning +1 and �1 values with equal probabil-
ities to the N elements of each vm. Using these memory vectors, set
the matrix of synaptic weights according to equation 6. Then, study
the behavior of the network by iterating equation 5. To measure how
close the state of the network at time t, v(t), is to a particularmemory
state, define the overlap function q(t) = v(t) � vm=N. This is equal to 1
if v(t) = vm, is near zero if v(t) is unrelated to vm, and is equal to �1 if
v(t) = �vm. Set the initial state v(0) so that it has a positive overlap,
q(0), with memory state v1. Plot q(t) as the network evolves from this
state according to equation 5. Final values of q(t) near one indicate
successful recovery of the memory. Do the same starting from v(0)
close to the inverse of the memory state �v1. What accounts for this
behavior? Determine the range of q(0) values (about v1) that assures
successfulmemory recovery for di�erent values of P. StartwithP = 1
and increase it until memory recovery fails even for q(0) = 1. Atwhat
P value does this occur?

3. Repeat exercise 2 with the matrixM replaced by

Maa0 = (1 � Æaa0) PX
m;m0=1 vma Cmm0vm0

a0 ;
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where Cmm0 is the m;m0 element of the inverse of the matrix

NX
a=1 vma vm0

a :
Compare the performance and capacity of the associative memory
constructed using this matrix with that of the associative memory in
exercise 2.

4. Build and study a simple model of oscillations arising from the in-
teraction of excitatory and inhibitory populations of neurons. The
firing rate of the excitatory neurons is rE, and that of the inhibitory
neurons is rI and these are characterized by equations 7.50 and 7.51.
Set MEE = 1:25, MIE = 1, MII = 0, MEI = �1, E = �10 Hz, I = 10
Hz, �E = 10 ms, and vary the value of �I. The negative value of E

means that this parameter serves as a source of background activity
(activity in the absence of excitatory input) rather than as a threshold.
Showwhat happens for �I = 30 ms and for �I = 50 ms. Find the value
of �I for which there is a transition between fixed-point and oscilla-
tory behavior, thereby verifying the results obtained analytically in
chapter 7 on the basis of equation 7.53.

5. matl ab® files 7p5.m and 7p5sub.m perform a numerical integra-
tion of a two-unit, nonlinear, symmetric recurrent network with a
threshold linear activation function F(I) = �[I]+ and plot the results.
Here, the dynamics come from

dv

dt
= �v + F(M � v + h)

with v = (v1; v2) and h1 = h2 = 1. The weight matrix in this example
isM = [0 �1 ; �1 0], which tends to make v1 and v2 compete. Execute7p5.m to see the consequences of regimes of high (� = 2) and low
(� = 0:5) activation (which is equivalent to large and small recurrent
weights). For these two values of �, plot the nullclines (the locations
in the v1-v2 phase planewhere dv1=dt = 0 and dv2=dt = 0). You should
find one fixed point for � = 0:5 and three for � = 2. Linearize the
network about the fixed point with v1 = v2 and derive a condition on� for this fixed point to be stable. (Based on a problem from Dawei
Dong.)

6. Plot the results of exercise 5 for the inputs h = (0:75; 1:25) and h =
(0:5; 1:5). By plotting nullclines for these values of h, explain the
resulting behavior. (Based on a problem from Dawei Dong.)

7. Use the expression

fu(s � �; g � ) = A exp

 � (s � �)2
2�2s !

N

 
g � �g

! ;
where A, �, �s, , and �g are parameters and N is the (sigmoidal)
cumulative normal function

N(z) = Z z�1 dx
1p
2� exp

 �x2
2

! = 1 � 1

2
erfc

 
zp
2

! :
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Plot fu(s � �; g � ) and find values of the parameters that make it
roughly match the gain-modulated response of figure 7.6B. Using
w(�; ) = exp(�(� + )2=2�2w), evaluate the integral in equation 7.15
in terms of a single cumulative normal function to show that the
resulting tuning curves are functions of s + g, and assess how the
tuning width depends on �s; �g and �w.


