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tiple factors simultaneously affect the spiking activity of individual
neurons. Determining the effects and relative importance of these
factors is a challenging problem in neurophysiology. We propose a
statistical framework based on the point process likelihood function to
relate a neuron’s spiking probability to three typical covariates: the
neuron’s own spiking history, concurrent ensemble activity, and
extrinsic covariates such as stimuli or behavior. The framework uses
parametric models of the conditional intensity function to define a
neuron’s spiking probability in terms of the covariates. The discrete
time likelihood function for point processes is used to carry out model
fitting and model analysis. We show that, by modeling the logarithm
of the conditional intensity function as a linear combination of
functions of the covariates, the discrete time point process likelihood
function is readily analyzed in the generalized linear model (GLM)
framework. We illustrate our approach for both GLM and non-GLM
likelihood functions using simulated data and multivariate single-unit
activity data simultaneously recorded from the motor cortex of a
monkey performing a visuomotor pursuit-tracking task. The point
process framework provides a flexible, computationally efficient ap-
proach for maximum likelihood estimation, goodness-of-fit assess-
ment, residual analysis, model selection, and neural decoding. The
framework thus allows for the formulation and analysis of point
process models of neural spiking activity that readily capture the
simultaneous effects of multiple covariates and enables the assess-
ment of their relative importance.

I N T R O D U C T I O N

Understanding what makes a neuron spike is a challenging
problem, whose solution is critical for deciphering the nature
of computation in single cells and neural ensembles. Multiple
factors simultaneously affect spiking activity of single neurons
and thus assessing the effects and relative importance of each
factor creates the challenge. Neural activity is often studied in
relation to 3 types of covariates. First, spiking activity is
associated with extrinsic covariates such as sensory stimuli and
behavior. For example, the spiking activity of neurons in the rat
hippocampus is associated with the animal’s position in its
environment, the theta rhythm, theta phase precession, and the
animal’s running velocity (Frank et al. 2002; Mehta et al. 1997,
2000; O’Keefe and Dostrovsky 1971; O’Keefe and Recce

1993). Retinal neurons respond to light intensity and light
contrast, and V1 neurons are influenced by the spatiotemporal
structure outside their classic receptive fields (Knierim and
Vanessen 1992; Sillito et al. 1995; Vinje and Gallant 2000).
The spiking activity of neurons in the arm region of the
primary motor cortex (MI) is strongly associated with several
covariates of motor behavior such as hand position, velocity,
acceleration, and generated forces (Ashe and Georgopoulos
1994; Fu et al. 1995; Scott 2003). Second, the current spiking
activity of a neuron is also related to its past activity, reflecting
biophysical properties such as refractoriness and rebound ex-
citation or inhibition (Hille 2001; Keat et al. 2001; Wilson
1999).

Third, current capabilities to record the simultaneous activ-
ity of multiple single neurons (Csicsvari et al. 2003; Donoghue
2002; Nicolelis et al. 2003; Wilson and McNaughton 1993)
make it possible to study the extent to which spiking activity in
a given neuron is related to concurrent ensemble spiking
activity (Grammont and Riehle 1999, 2003; Hatsopoulos et al.
1998, 2003; Jackson et al. 2003; Maynard et al. 1999; Sanes
and Truccolo 2003). Therefore, a statistical modeling frame-
work that allows the analysis of the simultaneous effects of
extrinsic covariates, spiking history, and concurrent neural
ensemble activity would be highly desirable.

Current studies investigating the relation between spiking
activity and these 3 covariate types have used primarily linear
(reverse correlation) or nonlinear regression methods (e.g.,
Ashe and Georgopoulos 1994; Fu et al. 1995; Luczak et al.
2004). Although these methods have played an important role
in characterizing the spiking properties in many neural sys-
tems, 3 important shortcomings have not been fully addressed.
First, neural spike trains form a sequence of discrete events or
point process time series (Brillinger 1988). Standard linear or
nonlinear regression methods are designed for the analysis of
continuous-valued data and not point process observations. To
model spike trains with conventional regression methods the
data are frequently smoothed or binned, a preprocessing step
that can alter their stochastic structure and, as a consequence,
the inferences made from their analysis. Second, although it is
accepted that extrinsic covariates, spiking history, and neural
ensemble activity affect neural spiking, current approaches
make separate assessments of these effects, thereby making it
difficult to establish their relative importance. Third, model
goodness-of-fit assessments as well as the analysis of neural
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ensemble representation based on decoding should be carried
out using methods appropriate for the point process nature of
neural spike trains.

To address these issues, we present a point process likeli-
hood framework to analyze the simultaneous effects and rela-
tive importance of spiking history, neural ensemble, and ex-
trinsic covariates. We show that this likelihood analysis can be
efficiently conducted by representing the logarithm of the point
process conditional intensity function in terms of linear com-
binations of general functions of the covariates and then using
the discrete time point process likelihood function to fit the
model to spike train data in the generalized linear model
(GLM) framework. Because the discrete time point process
likelihood function is general, we also show how it may be
used to relate covariates to neural spike trains in a non-GLM
model. We illustrate the methods in the analysis of a simulated
data example and an example in which multiple single neurons
are recorded from MI in a monkey performing a visuomotor
pursuit-tracking task.

M E T H O D S

In this section we present the statistical theory underlying our
approach. First, we define the conditional intensity function for a point
process. Second, we present a discrete time approximation to the
continuous time point process likelihood function, expressed in terms
of the conditional intensity function. Third, we show that when the
logarithm of the conditional intensity is a linear combination of
functions of the covariates, the discrete time point process likelihood
function is equivalent to the likelihood of a GLM under a Poisson
distribution and log link function. Alternatively, if the point process is
represented as a conditionally independent Bernoulli process and the
probability of the events is modeled by a logistic function, then the
likelihood function is equivalent to the likelihood of a GLM under a
Bernoulli distribution and a logistic link function. Fourth, we present
several forms of conditional intensity models for representing spiking
history, neural ensemble, and extrinsic covariate effects. Finally, we
define our approach to maximum likelihood estimation, goodness-
of-fit assessment, model comparison, residuals analysis, and decoding
from point process observations by combining the GLM framework
with analysis methods for point processes.

A point process is a set of discrete events that occur in continuous
time. For a neural spike train this would be the set of individual spike
times. Given an observation interval (0, T], a sequence of J spike
times 0 � u1 � . . . � uj � . . . � uJ � T constitutes a point process.
Let N(t) denote the number of spikes counted in the time interval (0,
t] for t � (0, T]. We define a single realization of the point process
during the time interval (0, t] as N0:t � {0 � u1 � u2 � . . . � uj �
t � N(t) � j} for j � J.

Conditional intensity function

A stochastic neural point process can be completely characterized
by its conditional intensity function �(t � H (t)) (Daley and Vere-Jones
2003), defined as

��t � H�t�� � lim
�30

P�N�t � �� � N�t� � 1 � H�t��

�
(1)

where P[ � � � ] is a conditional probability and H(t) includes the
neuron’s spiking history up to time t and other relevant covariates.
The conditional intensity is a strictly positive function that gives a
history-dependent generalization of the rate function of a Poisson
process. From Eq. 1 we have that, for small �, �(t � H(t))� gives
approximately the neuron’s spiking probability in the time interval (t,

t � �]. Because defining the conditional intensity function completely
defines the point process, to model the neural spike train in terms of
a point process it suffices to define its conditional intensity function.
We use parametric models to express the conditional intensity as a
function of covariates of interest, therefore relating the neuron’s
spiking probability to the covariates. We use �(t � �, H(t)) to denote
the parametric representation of the conditional intensity function in
Eq. 1, where � denotes an unknown parameter to be estimated. The
dimension of � depends on the form of the model used to define the
conditional intensity function.

A discrete time representation of the point process will facilitate the
definition of the point process likelihood function and the construction
of our estimation algorithms. To obtain this representation, we choose
a large integer K and partition the observation interval (0, T] into K
subintervals (tk	1, tk]k�1

K each of length � � TK	1. We choose large
K so that there is at most one spike per subinterval. The discrete time
versions of the continuous time variables are now denoted as
Nk � N�tk�, N1:k � N0:tk

, and Hk � H(tk). Because we chose large K,
the differences �Nk � Nk 	 Nk	1 define the spike train as a binary
time series of zeros and ones. In discrete time, the parametric form of
the conditional intensity function becomes �(tk � �, Hk).

Point process likelihood and GLM framework

Because of its several optimality properties, we choose a likelihood
approach (Pawitan 2001) for fitting and analyzing the parametric
models of the conditional intensity function. As in all likelihood
analyses, the likelihood function for a continuous time point process
is formulated by deriving the joint probability density of the spike
train, which is the joint probability density of the J spike times 0 �
u1 � u2 � . . . � uJ � T in (0, T]. For any point process model
satisfying Eq. 1, this probability density can be expressed in terms of
the conditional intensity function (Daley and Vere-Jones 2003). Sim-
ilarly, in the discrete time representation, this joint probability density
can be expressed in terms of the joint probability mass function of the
discretized spike train (see APPENDIX Eqs. A1 and A2) and is expressed
here as a product of conditionally independent Bernoulli events
(Andersen et al. 1992; Berman and Turner 1992; Brillinger 1988;
Brown et al. 2003)

P�N1:K � �� � �
k�1

K

���tk � �, Hk����Nk�1 � ��tk � �, Hk���1	�Nk � o(�J) (2)

where the term o(�J) relates to the probability of observing a spike
train with 2 or more spikes in any subinterval (tk	1, tk]. From Eqs.
A3–A5 in the APPENDIX, it follows that Eq. 2 can be reexpressed as

P�N1:K � �� � exp��
k�1

K

log ���tk � �, Hk����Nk � �
k�1

K

��tk � �, Hk���� o��J� (3)

If we view Eq. 3 as a function of �, given the spike train observations
N1:K, then this probability mass function defines our discrete time
point process likelihood function and we denote it as L(� � HK) �
P(N1:K � �). From Eq. A6 in the APPENDIX, it can be seen that Eq. 3 is
a discrete time approximation to the joint probability density of a
continuous time point process.

To develop a computationally tractable and efficient approach to
estimating � we note that for any subinterval (tk	1, tk], the conditional
intensity function is approximately constant so that, by Eq. 3,
P��Nk� � exp
log ���tk � �, Hk���Nk � ��tk � �, Hk��� is given by the
Poisson probability mass function. Because � is small, this is equiv-
alent to the Bernoulli probability P(�Nk) � [�(tk � �, Hk)�]�Nk [1	�
(tk � �, Hk)�]1	�Nk in Eq. 2. If we now express the logarithm of the
conditional intensity function as a linear combination of general
functions of the covariates
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log ��tk � �, Hk� � �
i�1

q

�igi�vi�tk � ��� (4)

where gi is a general function of a covariate vi(tk) at different time lags
�, and q is the dimension of the estimated parameter �, then Eq. 3 has
the same form as the likelihood function for a GLM under a Poisson
probability model and a log link function (see APPENDIX, Eqs. A7–A8).
Thus, maximum likelihood estimation of model parameters and like-
lihood analyses can be carried out using the Poisson–GLM frame-
work. Alternatively, if we extend the results in Brillinger (1988), we
obtain

log 
�1 � ��tk � �, Hk���	1���tk � �, Hk���� � �
i�1

q

�igi�vi�tk � ��� (5)

then Eq. 2 has the same form as the likelihood function for a GLM
under a Bernoulli probability distribution and a logistic link function
(Eqs. A9 and A10). Thus, maximum likelihood estimation of model
parameters and likelihood analyses can also be carried out using the
Bernoulli–GLM framework (see also Kass and Ventura 2001). In
other words, for � sufficiently small (i.e., at most one spike per time
subinterval), likelihood analyses performed with either the Bernoulli
or the Poisson model are equivalent. However, because we are
interested in modeling the conditional intensity function directly,
instead of the probability of events in our discrete time likelihoods, we
used the Poisson–GLM framework in our analyses.

Therefore, we can take advantage of the computational efficiency
and robustness of the GLM framework together with all of the
analysis tools from the point process theory: goodness-of-fit based on
the time rescaling theorem, residual analysis, model selection, and
stochastic decoding based on point process observations. We refer to
this combined framework as the point process–GLM framework. This
framework covers a very large class of models because Eq. 4 allows
for general functions of the covariates and of interaction terms
consisting of combinations of the covariates. An application of GLM
analysis to spike train data, without the support of the derived
relations between the point process and GLM likelihood functions,
would remain purely heuristic in nature.

Finally, Eqs. 2 and 3 are generally applicable discrete time approx-
imations for the point process likelihood function. Thus, when a
parametric model of the conditional intensity function cannot be
expressed in terms of either Eq. 4 or Eq. 5, the GLM framework may
be replaced with standard algorithms for computing maximum like-
lihood estimates (Pawitan 2001).

Models for the conditional intensity function

We formulate specific models for the conditional intensity function
that incorporate the effects of spiking history, ensemble, and extrinsic
covariates. For the exposition in the remainder of this section, we
extend our notation to include the neural ensemble activity. Consider
an observation time interval t � (0, T] with corresponding sequences
of Jc spike times 0 � u1

c � . . . � uj
c � . . . � uJc

c � T, for c � 1, . . . ,
C recorded neurons. Let N1:K

1:C��c�1
C N1:K

c denote the sample path for the
entire ensemble.

CONDITIONAL INTENSITY MODELS IN THE POINT PROCESS–GLM

FRAMEWORK. The general form for the conditional intensity func-
tion we use to model a single cell’s spiking activity is

��tk � N1:k
1:C, xk��, �� � �I(tk � N1:k, �1)�E�tk � N1:k

1:C, �E��X�tk � xk��, �X� (6)

where � � {�X, �E, �I}, �I(tk � N1:k, �I) is the component of the
intensity function conditioned on the spiking history N1:k of the
neuron whose intensity is being modeled, �E(tk � N1:K

1:C, �E) is the
component related to the ensemble history contribution, and �X(tk �

xk��, �X) is the component related to an extrinsic covariate xk��,
where � is an integer time shift. Note that the term Hk, used in the
previous section, is now replaced by more specific information ac-
cording to the model.

We consider the following specific models for each of these 3
covariate types. We begin with a model incorporating the spiking
history component.

The spiking history component is modeled as

�I�tk � N1:k, �I� � exp��0 � �
n�1

Q

�n�Nk	n� (7)

where Q is the order of the autoregressive process, �n represents
the autoregressive coefficients, and �0 relates to a background level
of activity. This model is henceforth referred to as the autoregres-
sive spiking history model. We apply Akaike’s standard informa-
tion criterion (AIC, see Eq. 16 below) to estimate the parameter Q.
We expect this autoregressive spiking history model to capture
mostly refractory effects, recovery periods, and oscillatory prop-
erties of the neuron.

The contributions from the ensemble are expressed in terms of a
regression model of order R

�E�tk � N1:k
1:C, �E� � exp�	0 � �

c

�
r�1

R

	r
c�N k	r

c � (8)

where the first summation is over the ensemble of cells with the
exception of the cell whose conditional intensity function is being
modeled. Thus the above model contains R � (C 	 1) parameters plus
one additional parameter for the background level. Note that the
coefficients in the ensemble model capture spike effects at 1-ms time
resolution and in this way they may reflect lagged-synchrony between
spikes of the modeled cell and other cells in the ensemble. Alterna-
tively, to investigate ensemble effects at lower time precision, we
consider the ensemble rates model

�E�tk � N1:k
1:C, �E� � exp�	0 � �

c

�
r�1

R

	r
c �N k	�r	1�W

c � N k	rW
c �� (9)

where the term Nk	(r	1)W
c 	 Nk	rW

c is the spike count in a time
window of length W covering the time interval (tk	rW, tk	(r	1)W]. The
coefficients in this model may reflect spike covariances on slow time
scales.

In our application to MI data, the extrinsic covariate xk�� will
specify the hand velocity. To model this component we employ a
variation of the Moran and Schwartz (1999) model, henceforth re-
ferred to as the velocity model

�X�tk � xk��, �X� � exp

0 � �Vk��� �
1 cos ��k��� � 
2 sin ��k����� (10)

where �Vk��� and �k�� are, respectively, the magnitude and angle
of the 2-D hand velocity vector in polar coordinates at time tk��.
In this model xk�� � [�Vk���, �k��]. For illustration purposes, we
have considered only a single, fixed-time shift � in the above
model. Based on previous results (Paninski et al. 2004) we set � �
150 ms. A much more generic model form including linear or
nonlinear functions of covariates at many different time lags could
be easily formulated.

The most complex conditional intensity function models we inves-
tigate are the autoregressive spiking history plus velocity and ensem-
ble activity, and the autoregressive spiking history plus velocity and
ensemble rates models. For the former, the full conditional intensity
function model is given by

Innovative Methodology

1076 TRUCCOLO ET AL.

J Neurophysiol • VOL 93 • FEBRUARY 2005 • www.jn.org



��tk � N1:k
1:C, xk��, �� � exp
� � �

n�1

Q

�n�Nk	n

� �
c

�
r�1

R

	r
c�N k	r

c � �Vk�� � �
1 cos ��k��� � 
2 sin ��k����� (11)

where � relates to the background activity.
It should be noticed that although these models are in the “gener-

alized linear” model class, the relation between the conditional inten-
sity function and spiking history, ensemble, and extrinsic covariates
can be highly nonlinear. These models are linear only after the
transformation of the natural parameter (here the conditional intensity
function) by the log link function and only with respect to the model
parameters being estimated. As seen in Eq. 4, general functions (e.g.,
quadratic, cubic, etc.) of the actual measured covariates can be used.

NON-GLM CONDITIONAL INTENSITY FUNCTION MODEL. To illustrate
the generality of the proposed point process framework, we construct
and analyze a non-GLM conditional intensity function model that also
incorporates effects of spiking history, neural ensemble, and extrinsic
covariates. Additionally, this example demonstrates a procedure for
obtaining a conditional intensity function by first modeling the inter-
spike interval (ISI) conditional probability density function. The
conditional intensity is obtained from the ISI probability density
model using the relation (Brown et al. 2003)

��tk � �, Hk� �
p�te � �, Hk�

1 ��
uNk	1

tk

p�t � �, H�t��dt

(12)

where te � tk 	 uNk	1
is the elapsed time since the most recent spike

of the modeled cell before time tk and p(te � �, Hk) is the ISI probability
density, specified here by the inhomogeneous inverse Gaussian (Bar-
bieri et al. 2001). This probability density is given in Eq. A11 in the
APPENDIX. This density is specified by a time-varying scaling param-
eter s(tk � � ) that, in our application to MI spiking data, captures the
velocity and ensemble rates covariate effects

s�tk � xt��, N1:k
1:C, �X, �E� � exp�� � �

c

�
r�1

R

	r
c(N k	�r	1�W

c � N k	rW
c )

� �Vk�� � �
1 cos ��k��� � 
2 sin ��k����� (13)

and a location parameter . The set of parameters defining the
inhomogeneous inverse Gaussian density and therefore the condi-
tional intensity function is denoted � � {�X, �E, }. This model (Eqs.
12, 13, and A11) is henceforth referred to as the inhomogeneous
inverse Gaussian plus velocity and ensemble rates model. The history
dependence in this model extends back to the time of the previous,
most recent spike.

Maximum likelihood parameter estimation

Maximum likelihood parameter estimates for the models in the
point process–GLM framework were efficiently computed using
the iterative reweighted least squares (IRLS) algorithm. This
method is the standard choice for the maximum likelihood estima-
tion of GLMs because of its computational simplicity, efficiency,
and robustness. IRLS applies the Newton–Raphson method to the
reweighted least squares problem (McCullagh and Nelder 1989).
Given the conditional intensity model in Eq. 4, the log-likelihood
function is strictly concave. Therefore, if the maximum log-
likelihood exists, it is unique (Santner and Duffy 1989). Confi-
dence intervals and p-values were obtained following standard

computations based on the observed Fisher information matrix
(Pawitan 2001). Statistically nonsignificant parameters (e.g. P �
0.001) were set to zero for all of the models. In the non-GLM case,
the inhomogeneous inverse Gaussian model was fit by direct
maximization of the likelihood function using a quasi-Newton
method (IMSL, C function min_uncon_multivar, from Visual Nu-
merics, 2001). For the data sets used here, the most intensive
computations involved operations on large matrices of size about
106 � 200. Algorithms were coded in C and run on dual-processor
3.9-GHz IBM machines, 2 GB of RAM memory. Standard GLM
estimation using IRLS is also available in several statistical pack-
ages (S-Plus, SPSS, and Matlab Statistics toolbox).

Goodness-of-fit, point process residual analyses and
model comparison

KOLMOGOROV–SMIRNOV (K-S) TEST ON TIME RESCALED ISIS. Be-
fore making an inference from a statistical model, it is crucial to assess
the extent to which the model describes the data. Measuring quanti-
tatively the agreement between a proposed model and a spike train
data series is a more challenging problem than for models of contin-
uous-valued processes. Standard distance measures applied in contin-
uous data analyses, such as average sum of squared errors, are not
designed for point process data. One alternative solution to this
problem is to apply the time-rescaling theorem (Brown et al. 2002;
Ogata 1988; Papangelou 1972) to transform point processes like spike
trains into continuous measures appropriate for goodness-of-fit assess-
ment. Once a conditional intensity function model has been fit to a
spike train data series, we can compute rescaled times zj from the
estimated conditional intensity and from the spike times as

zj � 1 � exp �	�
uj

uj�1

��t � H�t�, �̂�dt� (14)

for j � 1, . . . , J 	 1, where �̂ is the maximum likelihood estimate of
the parameters. The zj values will be independent uniformly distrib-
uted random variables on the interval [0, 1) if and only if the
conditional intensity function model corresponds to the true condi-
tional intensity of the process. Because the transformation in Eq. 14 is
one to one, any statistical assessment that measures the agreement
between the zj values and a uniform distribution directly evaluates
how well the original model agrees with the spike train data. To
construct the K-S test, we order the zj values from smallest to largest,
denoting the ordered values as z( j), and then plot the values of the
cumulative distribution function of the uniform density function
defined as bj � ( j 	 1/2)/J for j � 1, . . . , J against the z( j). We term
these plots K-S plots. If the model is correct, then the points should lie
on a 45° line. Confidence bounds for the degree of agreement between
a model and the data may be constructed using the distribution of the
Kolmogorov–Smirnov statistic (Johnson and Kotz 1970). For moder-
ate to large sample sizes the 95% confidence bounds are well approx-
imated by bj � 1.36 � J	1/2 (Johnson and Kotz 1970).

To assess how well a model performs in terms of the original ISIs
(ISIj � uj 	 uj	1), we relate the ISIs to the computed zj values in the
following manner. First, the empirical probability density of the zj

values is computed, and the ratio of the empirical to the expected
(uniform) density is calculated for each bin in the density. Second, the
ISI values in the data are rounded to integer milliseconds and col-
lected into bins. For these ISIs, all the corresponding zj values as well
as the ratios of empirical to expected densities in the related bins are
obtained. This correspondence between ISIs and zj values is easily
available from Eq. 14. Third, we compute the mean ratio R (i.e., the
mean of all the ratios for this particular ISI value). A mean ratio R �
1 (R � 1) implies that there are more (less) rescaled ISIs of length zj

than expected and that the intensity is being underestimated (overes-
timated), on average, at this particular ISI value.
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If the model is correct, the zj values should be not only uniformly
distributed, but also independent. Thus, even when the K-S statistic is
small, we still need to show that the rescaled times are independent.
Here we assess independence up to 2nd-order temporal correlations
by computing the autocorrelation function of the transformed rescaled
times. As a visualization aid, we plot zj�1 against zj.

POINT PROCESS RESIDUAL ANALYSIS. A standard approach in good-
ness-of-fit analysis is to examine structure in the data that is not
described by the model. For continuous valued data, this is done by
analyzing the residual error (i.e., the difference between the true and
predicted values). For point process data, a different definition of
residuals is needed to relate the conditional intensity function to the
observed spike train data. The point process residual (Andersen et al.
1992) over nonoverlapping moving time windows is defined as

M�tk� � �
i�k	B

k

�Ni ��
tk	B

tk

��t � H�t�, �̂�dt (15)

for k 	 B � 1. In the application to MI data, we will look for relations
between the point process residual and motor covariates (e.g., speed or
direction) by computing their cross-correlation functions. Existence of
correlations would imply that there is some structure left in the
residuals that is not captured by the conditional intensity function
model.

MODEL SELECTION. An additional tool for comparing models comes
from the statistical theory of model selection (Burnham and Anderson
2002). The idea consists of choosing the best models to approximate
an underlying process generating the observed data, a process whose
complexity can be potentially infinite dimensional. To achieve this
goal, we adopt Akaike’s standard information criterion (AIC) (Akaike
1973). This criterion also provides a way to rank different candidate
models. The AIC was originally derived as an estimate of the expected
relative Kullback–Leibler distance (Cover and Thomas 1991) between
a distribution given by an approximating model and the distribution of
the true underlying process generating the data. This criterion is
formulated as

AIC�q� � 	2 log L��̂ � Hk� � 2q (16)

where L(�̂ � HK) is the likelihood function, L(�̂ � HK) � P(N1:K � �̂,
HK); �̂ is the maximum likelihood estimate of the model parameters
�̂; and q is the total number of parameters in the model. By this
criterion, the best model is the one with the smallest AIC, implying
that the approximate distance between this model and the “true
process” generating the data is smallest. The AIC is frequently
interpreted as a measure of the trade-off between how well the model
fits the data and the number of parameters required to achieve that fit,
or of the desired trade-off between bias and variance (Burnham and
Anderson 2002). An equivalence between AIC and cross-validation
for the purpose of model selection has been established (Stone 1977).
AIC can be applied to both nested and nonnested models, and to
models with different distributions in their stochastic component. We
compute AIC values for different models to guide our model com-
parison. Specifically, we provide the difference between the AIC of all
of the models with respect to the AIC of the best model. We also use
the AIC to estimate the order of the autoregressive spiking history
component in Eq. 7.

Neural decoding analysis by state estimation with point
process observations

Beyond assessing the goodness-of-fit of a single cell model with
respect to its individual spike train data, we also analyze the ability of
the model, over the entire cell population, to decode an m-dimensional
extrinsic covariate xk��. Such decoding will use the spike times of the
entire ensemble of cells and the corresponding conditional intensity

function for each of these cells. We thus perform a state estimation of
xk based on point process observations and thereby assess the ensem-
ble coding properties of the cell population. The estimated extrinsic
covariate will be given by the posterior mode after a Gaussian
approximation to the Bayes–Chapman–Kolmogorov system (Eden et
al. 2004).

For the particular type of hand kinematics data described above, we
model xk as a Gaussian autoregressive process of order 1, henceforth
AR(1), given by

xk�� � �x � Fxk��	1 � �k�� (17)

where �x is an m-dimensional vector of mean parameters, F is an m �
m state matrix, and �k is the noise term given by a zero mean
m-dimensional white Gaussian vector with m � m covariance matrix
W�. The matrices F and W� are fitted by maximum likelihood.

The point process observation equation is expressed in terms of the
modeled conditional intensity functions �c(tk � � ) for each of the C
cells entering the decoding. As an example, for intensity functions
conditioned on a motor covariate xk�� and intrinsic spiking history
N1:k

C , we have the following recursive point process filter.

One step prediction

xk�� � k��	1 � �x � Fxk��	1 � k��	1 (18)

One-step prediction covariance

Wk�� � k��	1 � FWk��	1 � k��	1F � W� (19)

Posterior covariance

Wk�� � k�� � �Wk�� � k��	1
	1 � �

c�1

C

�� log �c �tk � N 1:k
c , xk�� � k��	1, �̂ c��

�c�tk � N 1:k
c , xk�� � k��	1, �̂ c��[� log �c �tk � N 1:k

c , xk�� � k��	1, �̂ c�]

� �
c�1

C

�2 log �c �tk � N 1:k
c , xk�� � k��	1, �̂ c�

��N 1:k
c � �c�tk � N 1:k

c , xk�� � k��	1, �̂ c����	1

(20)

Posterior mode

xk�� � k�� � xk�� � k��	1 � Wk�� � k��

� �
c�1

C

� log �c�tk � N 1:k
c , xk�� � k��	1, �̂ c� ��N 1:k

c 	�c�tk � N 1:k
c , xk�� � k��	1, �̂ c���

(21)

The term �(�2) denotes the m-dimensional vector (m � m matrix) of
first (second) partial derivatives with respect to xk��, and Wk���k�� is
the posterior covariance matrix of xk��. Similarly, decoding equations
based on other models of the conditional intensity function can be
obtained. The derivation of the recursive point process filter is based
on the well-established (Mendel 1995; Kitagawa and Gersh 1996)
relation between the posterior probability density and the Chapman–
Kolmogorov (one-step prediction) probability density, and on a
Gaussian approximation of the posterior density (for details see Eden
et al. 2004). The Gaussian approximation results from a 2nd-order
Taylor expansion of the density and it is a standard first approach for
approximating probability densities (Tanner 1996; Pawitan 2001).
Nonetheless, the spiking activity enters into the computations in a
very non-Gaussian way through the point process model instantiated
by the conditional intensity function.

The amount of uncertainty in the algorithm about the true state of
the decoded parameter is related to the matrix Wk���k��. Confidence
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regions and coverage probability for the decoding can thus be ob-
tained as follows. At time k�t an approximate 0.95 confidence region
for the true covariate xk�� may be constructed as

�xk�� � xk�� � k���Wk�� � k��
	1 �xk�� � xk�� � k��� � �0.95

2 �m� (22)

for k � 1, 2, . . . , K, where �0.95
2 (m) gives the 0.95 quantile of the �2

distribution with degrees of freedom equal to the dimension m of the
covariate. The coverage probability up to time tk is given by sk/k
where sk is the number of times the true covariate is within the
confidence regions during the time interval (0, k�]. In the decoding
analysis we compute the mean of the coverage probability over the
entire decoding period. A Monte Carlo simulation is employed to
obtain the confidence intervals and coverage probability for the
covariate in polar coordinates. We first use the estimated posterior
covariance matrix to generate 104 Gaussian-distributed samples cen-
tered at the current covariate estimates in Cartesian coordinates.
Second, these random samples are converted to polar coordinates.
Finally, the confidence intervals are then computed from the distri-
bution of the random samples in polar coordinates.

R E S U L T S

The proposed point process framework is illustrated with 2
examples. The first one is applied to simulated neural spike
data and the second to multiple single units simultaneously
recorded from monkey primary motor cortex. For the discrete
time representation of the neural point process we set � � 1
ms.

Simulation study

The goal of the simulation study is 2-fold. First, we illustrate
the main properties of the model in Eq. 11 containing the
autoregressive history, neural ensemble history, and motor
covariate effects. Second, we demonstrate that the parameters
of the simulated model are accurately recovered from relatively
small spike data sets by maximum likelihood estimation im-
plemented with the IRLS algorithm.

The conditional intensity functions of 6 neurons (A, B, C, D,
E, F) were simulated using methods as described in Ogata
(1981). The intensity of 5 of them (B–F) was given by the
velocity model (Eq. 10); that is, the neurons were modeled as
inhomogeneous Poisson processes with mean background
spiking rates of 17, 16, 9, 8, and 7 Hz, respectively, and
inhomogeneity introduced by the modulating hand velocity
signal. Different velocity tuning functions were used for the set
of cells. The hand velocity signal was sampled from actual
hand trajectories performed by a monkey (see Application to
MI spiking data, below). The conditional intensity function for
neuron A was given by the autoregressive spiking history plus
ensemble and velocity model (Eq. 11). The background mean
firing rate of this neuron was set to 10 Hz. The autoregressive
spiking history component contained 120 coefficients covering
120 ms of spiking history (see Fig. 2B). The autoregressive
coefficients mimicked the effects of refractory–recovery peri-
ods and rebound excitation. From the ensemble of 5 neurons,
only 2 contributed excitatory (neuron B) and inhibitory (neuron
C) effects at 3 time lags (	1, 	2, and 	3 ms).

The simulation scheme worked as follows. Starting with the
initial simulation time step, first the conditional intensity func-
tions were updated and then, at the same time step, the spiking
activities for all of the cells were simulated. The simulation
then moved to the next time step. The conditional intensity

functions were updated based on the past intrinsic and ensem-
ble spiking history (neuron A only) and on the current hand
velocity state (all neurons).

The main features of the conditional intensity function
model in Eq. 11 can be observed in Fig. 1, where the simulated
conditional intensity function of neuron A and its own spiking
activity are plotted together with the activity of the other 5
neurons and the contribution of velocity signal. The simulated
conditional intensity function clearly shows the dependence on
spike history: after a spike, the intensity drops to almost zero
and slowly recovers, reaching a period of higher than back-
ground spiking probability at about 20 ms after the spike. Fast
excitatory and inhibitory effects follow the spikes of neurons B
and C. Spiking history, neural ensemble, and velocity modulate
each other’s contributions in a multiplicative fashion.

From the simulated ensemble spike trains and from the
velocity signal, we then estimated the conditional intensity
function generating the spiking activity of neuron A. The data
set entering the estimation algorithm thus consisted of 6 sim-
ulated spike trains, each 200 s long, and of the hand velocity
time series in polar coordinates. The spike train for the mod-
eled neuron A contained 2,867 spikes. The parametric model
for the estimated conditional intensity function consisted of a
background mean, 120 autoregressive coefficients, and 5 re-
gressive coefficients for each of the other 5 neurons (i.e., 25
coefficients in total). Each set of 5 coefficients related to
spiking activity at lags 	1, 	2, . . . , 	5 ms. The IRLS

FIG. 1. Simulated conditional intensity function model. Conditional inten-
sity function, modeled as in Eq. 1, was simulated and used to generate a spike
train (neuron A, blue asterisks mark the times of the spike events). In this
model, the intensity (blue curve) was conditioned on the past spiking history,
the spikes of 2 other neurons (neuron B, excitatory, red asterisks; neuron C,
inhibitory, green asterisks), and on hand velocity. Past spiking history effect
was modeled by a 120-order autoregressive process carrying a refractory
period, recovery, and rebound excitation. Coefficient values were based on
parameters estimated from a primary motor cortex (MI) cell (see Fig. 5B). The
conditional intensity function resulting from the contribution of only hand
velocity is shown by the black line. Three other cells were also simulated
(neurons D, E, and F; black asterisks). Neurons B–F were modeled as
inhomogeneous Poisson processes modulated according to the velocity model
(Eq. 10). All cells had different preferred movement directions. Spiking
history, ensemble, and velocity modulated each other in a multiplicative
fashion. Simulated ensemble spike trains together with hand velocity were
used to estimate the parameters for the conditional intensity function model of
neuron A (see Fig. 2).
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algorithm converged in 12 iterations (tolerance was set to
10	6). Statistically nonsignificant parameters (P � 0.001) were
set to zero (see METHODS section). The true model parameters
used in the simulation of neuron A were accurately recovered
(Fig. 2, B and C), with the estimated model passing the K-S
goodness-of-fit test (Fig. 2D). Parameter estimation on smaller
data sets (about 50 s of data) led to similar successful fittings.

Application to MI spiking data

Experimental data were obtained from the MI area of a
behaving monkey. Details of the basic recording hardware and
protocols are available elsewhere (Donoghue et al. 1998;
Maynard et al. 1999). After task training, a Bionic Technolo-
gies LLC (BTL, Salt Lake City, UT) 100-electrode silicon
array was implanted in the area of MI corresponding to the arm
representation. One monkey (M. mulatta) was operantly con-
ditioned to track a smoothly and randomly moving visual
target. The monkey viewed a computer monitor and gripped a
2-link, low-friction manipulandum that constrained hand
movement to a horizontal plane. The hand (x, y) position signal
was digitized and resampled to 1 kHz. Low-pass–filtered finite

differences of position data were used to obtain hand veloci-
ties. Some 130 trials (8–9 s each) were recorded. More details
about the statistical properties of the distributions for hand
position and velocity, spiking sorting methods, and other task
details can be found in Paninski et al. (2004).

Models including 1, 2, or all of the 3 types of covariates
were analyzed. To start, we focus on the analysis of the
velocity and the autoregressive spiking history plus velocity
models. Later, we also compare these 2 models using neural
decoding based on the observation of the entire ensemble of
cells. For this reason, we analyzed these 2 models for each of
the 20 cells in the ensemble. More detailed analysis involving
K-S plots, point process residuals, and AIC model comparison
will be illustrated for one typical cell.

K-S GOODNESS-OF-FIT ANALYSIS FOR THE VELOCITY AND THE AU-

TOREGRESSIVE SPIKING HISTORY PLUS VELOCITY MODELS. The
tuning functions obtained from the velocity model (Eq. 10) are
shown in Fig. 3. This model was statistically significant for all
of the cells. Preferred direction was diverse across cells,
covering the range of possible directions. The corresponding
K-S plots are shown in Fig. 4. The quantiles refer to the z(j)s
(Eq. 14) and the cumulative distribution function (CDF) refers
to the expected uniform distribution for the case when the
estimated conditional intensity model was equivalent to the
true one. The velocity model tends to overestimate (underes-
timate) the conditional intensity at lower (middle) quantiles.
Introduction of the autoregressive spiking history component
(Eq. 7) in the velocity model greatly improved the explanation
of the spiking process, almost completely eliminating both the
over- and underestimation of the intensity. The maximum
order of the autoregressive component was about 120 (i.e., the
component incorporated history effects spanning over 120 ms
in the past). The most significant history effects extended to 60
ms in the past. For the majority of the cells, this component
seemed to capture mostly 3 main history effects: refractory and
recovery periods followed by an increase in the firing proba-
bility around 20 ms after a spike (see Fig. 5B). It should be
noticed that the autoregressive coefficients could have also
reflected dynamical network properties of nonmeasured neural
ensembles such as networks of excitatory and inhibitory neu-
rons where the modeled cell is embedded, or nonmeasured fast
extrinsic covariates. No significant differences in the K-S plots
were observed between a pure autoregressive history model
and the autoregressive history plus velocity models (not
shown).

Figure 5, C and D summarize the above observations for a
typical cell (cell 75a, 29,971 spikes over 130 trials, i.e., �1,040
s) in this example set and relate the fitting problems of the
velocity model to the original nontime rescaled ISIs. In the
velocity model, the intensity is overestimated (mean ratio R �
1) for ISIs below 10 ms and underestimated (mean ratio R �
1) for ISIs in the interval 10 to about 40 ms (Fig. 5D). The
overestimation is likely a reflection of a refractory–recovery
period (up to �10 ms) after the cell has spiked, which is not
captured by the velocity model. The underestimation reflects a
period of increased firing probability that follows the recovery
period. These 2 different regimes are reasonably well captured
by the coefficients of the autoregressive component (see Fig.
5B), thus resulting in the improved fit observed for the autore-
gressive spiking history plus velocity model. Introduction of

FIG. 2. Model parameter estimation by iteratively reweighted least squares
(IRLS) in the generalized linear model (GLM) framework. Spike trains of the
6 simulated cells (each lasting 200 s; see Fig. 1) together with hand velocity
produced the data set for the estimation of the parameters of the conditional
intensity function model for neuron A. Spike train of neuron A consisted of
2,867 spikes. A: ISI distribution for neuron A. B: true autoregressive coeffi-
cients (thick curve) and the estimated ones. C: ensemble covariate in the
estimated model contained 5 coefficients per cell (covering 5 ms of the past).
Only the 3 coefficients for the excitatory and inhibitory cells were significantly
different from zero (P � 0.001). Bars indicate the 95% confidence intervals.
Small circles show the location of the true coefficients. D: Kolmogorov–
Smirnov (K-S) goodness-of-fit test shows that the estimated conditional
intensity model passed the test (the 95% confidence region is given by the
parallel lines). Coefficients for the velocity covariate 
1 � 0.1 and 
2 � 	0.05
were estimated as 
̂1 � 0.105 and 
̂2 � 	0.045.
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the autoregressive component makes the observed density for
the zj values much closer to the expected uniform density (Fig.
5C).

The K-S statistic measures how close rescaled times are to
being uniformly distributed on [0, 1). In addition, a good model
should also generate independent and identically distributed
rescaled times. To illustrate this point, we checked for temporal
correlations at lag 1 in the time-rescaled ISIs (Fig. 6). As
expected, some temporal structure remains in the case of the
velocity model (r2 � 0.25, P � 10	6), whereas this structure
is effectively insignificant for the velocity plus autoregressive
spiking history (r2 � 0.002, P � 10	6). The cross-correlation
function computed over a broad range of lags was consistent
with this result.

POINT PROCESS RESIDUAL ANALYSIS. Even though the parame-
ters for the velocity model were statistically significant, the
K-S plot analysis showed that the velocity model fell short of
explaining the entire statistical structure in the observed single-
cell spiking activity. It thus remains to be seen how well this
model captured the relationship between hand velocity and
spiking activity. Besides neural decoding, another approach to
address this problem is to measure the correlations among the
point process residuals as defined in Eq. 15 and the movement
velocity. Existence of correlations would imply that there is
some structure left in the residuals that is not captured by the
velocity model. On the other hand, a decrease in the correlation
level with respect to some other model would imply that the

velocity model does capture some of the structure in the
spiking activity related to hand velocity.

We computed the correlations for the residuals from the
autoregressive spiking history model (Eq. 7) and compared
them to the correlations for the residuals from the velocity and
from the autoregressive spiking history plus velocity model.
Residuals were computed for nonoverlapping 200-ms moving
windows (Fig. 7). Cross-correlation functions were computed
between the residuals and the mean of the kinematic variables.
Mean (x, y) velocities were computed for each time window
and were used to obtain, in polar coordinates, the respective
mean movement speed and direction. In the autoregressive
model case, peak cross-correlation values between the residu-
als and direction, speed, and velocities in x and y coordinates
were 0.29, 0.10, 	0.17, and 0.50, respectively. For the autore-
gressive spiking history and velocity model, the peak cross-
correlation values for the same variables were 0.08, 0.06,
	0.12, and 0.28. This suggests that, for this particular neuron,
the velocity model captures a significant amount of information
about hand velocity available in the spiking activity. Nonethe-
less, it is also clear that there is a residual structure in the
spiking activity that is statistically related to the hand velocity
in Cartesian coordinates and that is not captured by the autore-
gressive spiking history plus velocity model. Furthermore, the
cross-correlation functions for both the velocity and the au-
toregressive spiking history plus velocity model show no
significant differences, which suggests that the autoregressive

FIG. 3. Velocity tuning functions. Condi-
tional intensity function values, based on the
velocity model, are expressed by pseudo-
color maps. Velocity is given in polar coor-
dinates, with � representing the movement
direction. Each subplot relates to a particular
cell, with cells’ labels given at the top.
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component does not carry additional statistical information
about hand velocity.

MODEL COMPARISON. We compared partial and complete (i.e.,
1, 2, or 3 covariate types) conditional intensity function models
for cell 75a. The ensemble model included spiking activity of
each cell at 4 time lags (	1, 	2, 	3, and 	4 ms). The
ensemble rates included the spike counts of each cell at 3
nonoverlapping and lagged time windows. The length of each
of the time windows, specified by the parameter W in Eq. 9,
was 50 ms. The K-S plots in Fig. 8 reveal that the autoregres-
sive spiking history plus velocity and the autoregressive spik-
ing history plus velocity and ensemble rates models provided
the best fits among all of the models for this specific cell. The
inhomogeneous inverse Gaussian plus velocity and ensemble
rates model performed better than the velocity, ensemble, and
ensemble rates models. Inspection of the coefficients for the
ensemble and ensemble rates models showed that the depen-
dencies were statistically significant for many of the cells in the
ensemble. Individual cells contributed either positive or nega-
tive effects to the conditional intensity function and the effec-
tive ensemble contribution to the modulation of the conditional
intensity function could reach tens of hertz.

In the above K-S plot comparisons, some of the models had
K-S statistics far from the 95% confidence intervals or nearly
identical to those from other models, making a clear compar-
ison difficult. The AIC analysis was then used to provide a
more detailed comparison, as well as to take the complexity of
the model (i.e., number of parameters) into consideration in the
model comparison. Figure 9 shows the ranked models in terms

of their difference with respect to the AIC of the best model. In
this context, models with lower AIC difference values are
considered better models.

Overall, this criterion provided a fine model ranking and
suggested that models containing the autoregressive spiking
history component performed better in each instance. Among
the alternative models for spiking history, the autoregressive
spiking history model performed better than the conditional
intensity model based on the inhomogeneous inverse Gaussian
ISI distribution model (Eqs. 12, 13, and A11), both in the AIC
and K-S goodness-of-fit analyses. Also, the ensemble rates
model did better than models containing only the velocity
covariate or the ensemble covariate at fine temporal precision.

VELOCITY AND MOVEMENT DIRECTION DECODING ANALYSIS. The
velocity (Eq. 10) and the autoregressive spiking history plus
velocity models were used in the neural decoding of hand
velocity. Models were fit to a training data set (120 trials, about
8–9 s each) and applied to decoding on a different test data set
(10 trials, again about 8–9 s each). The state matrix F for the
AR(1) state process (Eq. 17) was estimated to be diagonal with
nonzero terms approximately equal to 0.99, and the noise
covariance matrix W� to be diagonal with nonzero entries
equal to 0.01. Figure 10 shows the resulting decoding of
movement direction and, in Cartesian coordinates, the esti-
mated (x, y) velocities for a single test trial based on the
velocity model. Overall, decoding of movement direction was
remarkably good. Decoded (x, y) velocities captured mostly
slower fluctuations. To compare the decoding performance of
the 2 models, we computed the coverage probability and the

FIG. 4. K-S plots for the velocity model
and the autoregressive spiking history plus
velocity model. Because the K-S plots are
constructed from a uniform distribution on the
interval [0, 1), the 50th and 100th percentiles
correspond, respectively, to quantiles 0.5 and
1.0 on both the horizontal and vertical axes.
Two-sided 95% confidence error bounds of
the K-S statistics are displayed for each cell
(45° red lines). Visual inspection alone al-
ready reveals that, for most of the cells, the
autoregressive spiking history plus velocity
model (solid curve) improves the fit
considerably.

Innovative Methodology

1082 TRUCCOLO ET AL.

J Neurophysiol • VOL 93 • FEBRUARY 2005 • www.jn.org



decoding error. Table 1 gives the mean values (across time and
trials) for the coverage probabilities of the bivariate estimate
(velocity magnitude and movement direction) and the coverage
probabilities of the univariate estimate (velocity magnitude or
movement direction). Mean coverage probability for the move-
ment direction estimate was 0.94 for the velocity model. For
the same model, coverage probabilities for the bivariate esti-
mate and velocity magnitude were much smaller, consistent
with the observation that the estimated velocities in Cartesian
coordinates captured mostly slow fluctuations. Mean coverage
probability, mean and median decoding errors, and confidence
intervals for the decoding errors were not significantly different
between the 2 models.

D I S C U S S I O N

An important problem in neurophysiology is determining the
factors that affect a neuron’s spiking behavior. To address this
question we have presented a point process statistical frame-
work that allowed us to characterize simultaneously the effects
of several covariates on the spiking activity of an individual

neuron. The 3 types of covariates we considered were the
neuron’s spiking history, past neural ensemble activity, and
extrinsic covariates such as stimuli or behavior. Because de-

FIG. 5. Contribution of the autoregressive spiking history component. Cell
75a is chosen to illustrate how the addition of the autoregressive component
improves the model’s fit. A: ISI histogram. B: estimated coefficients of the
autoregressive component. Autoregressive component incorporates a recovery
period after the cell spikes, which lasts for about 18 ms (negative coefficients).
Cell’s firing probability then starts to increase, peaking at about 25 ms after a
spike. Order refers to the order of the AR coefficient representing increasing
times since the last spike. C: histogram for the transformed times zj for both
models (green: velocity model; blue: autoregressive spiking history plus
velocity model). Black line shows the expected uniform distribution for the
case where the estimated intensity function is close enough to the true intensity
function underlying the neural point process. D: mean ratio of observed to
expected zj values indicates that the velocity model overestimates, on average,
the intensity function for periods up to about 10 ms after a spike, while it tends
to underestimate the intensity for periods between 10 and 40 ms. Introduction
of the negative (positive) autoregressive coefficients almost completely elim-
inates the over (under) estimation of the conditional intensity function based on
the velocity model alone.

FIG. 6. Temporal correlations in the time-rescaled ISIs. Scatter plots are
shown for consecutive zj values from the velocity and autoregressive spiking
history plus velocity (ARVel) models applied to cell 75a. Clearly, the autore-
gressive spiking history plus velocity model presents a more independent
rescaled distribution. Corresponding correlation coefficients are 0.25 (P �
10	6) for the velocity model and 0.002 (P � 10	6) for the autoregressive
spiking history plus velocity model. Cross-correlation functions computed
over a broad range of lags led to similar results. Thus, in addition to improving
the fit in the K-S plots, the introduction of the autoregressive component also
eliminates temporal correlations among the rescaled times observed for the
velocity model.

FIG. 7. Point process residual analysis. A: cross-correlation function C(�)
between the hand-movement direction and the residuals from the autoregres-
sive spiking history (AR, thick curve), the velocity (thin curve), and the
autoregressive spiking history plus velocity (ARVel, dashed curve) models
applied to cell 75a. B–D: cross-correlations functions between the residuals
and speed, and velocity in Cartesian coordinates (Vx and Vy). Correlations are
significantly reduced for the velocity model in comparison to the autoregres-
sive spiking history model. Nonetheless, there remains some structure in the
point process residual that is related to the hand velocity but was not captured
by the velocity model. Correlations for the velocity model were practically
identical to the autoregressive spiking history plus velocity model, suggesting
that the autoregressive component does not provide additional information
about velocity (see text for details).
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fining the conditional intensity function defines a point process
model, the explanatory contributions of the covariates were
assessed by constructing conditional intensity function models
in terms of these covariates and by using a likelihood-based
estimation approach to fit these models to data and to assess
goodness-of-fit.

Analyses that measure the simultaneous effects of different
covariates are crucial because the covariates modulate the
neural spiking activity at the same time. Currently used anal-
ysis methods do not allow for the modeling of the simultaneous
effects of spiking history, neural ensemble, and extrinsic co-
variates on the spike train treated as a point process. To
evaluate the relation between spiking activity and covariates,
the spike train data are frequently transformed to a rate func-
tion and the relation between the rate function and the covariate

is then assessed using regression methods (e.g., Ashe and
Georgopoulos 1994; Luczak et al. 2004). The relation between
a neuron’s spiking activity, spiking history, and concurrent
neural activity are usually assessed using autocorrelation and
pairwise cross-correlation analyses performed directly on the
spike train (e.g., Hatsopoulos et al. 1998). The use of different
methods to assess individually the importance of these covari-
ates precludes an analysis of the neural point process in which
the relative importance of all covariates is assessed and may
also lead to a misleading estimate of the covariate effects. For
example, spiking history effects can interfere with the accurate
estimation of extrinsic covariate effects in spike triggered
averages and reverse correlation methods (Aguera y Arcas and
Fairhall 2003; Aguera y Arcas et al. 2003). Additionally,
current analysis techniques also assess the contribution of
ensemble covariates separately. For instance, pairwise cross-
correlation analyses measure the statistical association of a
single neuron to each member of the ensemble separately but
not the association between the single neuron’s activity and the
entire observed ensemble.

The key to our likelihood approach is representing the
conditional intensity function of a single neuron in terms of the
covariates. In this way, the covariates are directly related to the
probability that the neuron spikes. Although this formulation
can be used generally to analyze the relation between covari-
ates and neural spiking activity, it usually requires writing a
new algorithm or function to carry out the maximum likelihood

FIG. 9. Akaike’s standard information criterion (AIC) model comparison.
For convenience, we plot the differences of the AICs, denoted by �AIC of all
of the models with respect to the AIC of the best model. Following this
criterion and convention, better models have smaller AIC differences. Model
labels: autoregressive spiking history (AR), autoregressive spiking history plus
velocity (ARVel), autoregressive spiking history plus velocity and ensemble
(ARVelEns), autoregressive spiking history plus velocity and ensemble rates
(ARVelEnsRates), inhomogeneous inverse Gaussian plus velocity and ensem-
ble rates models (IIGVelEnsRates), velocity plus ensemble (VelEns), and
velocity plus ensemble rates (VelEnsRates). See METHODS section for model
details. (Cell 75a).

FIG. 8. Goodness-of-fit assessment (K-S plots) of alternative models. For
comparison purposes, the models are shown in 2 groups. Top: the velocity,
ensemble, ensemble rates, and the inhomogeneous inverse Gaussian plus
velocity and ensemble rates models (IIGVelEnsRates) are compared. Bottom:
the autoregressive spiking history plus velocity model (ARVel) is compared
to 2 other models that add the ensemble (ARVelEns) or the ensemble
rates component (ARVelEnsRates). K-S plots for the ARVel and the
ARVelEnsRates partially overlap. (Cell 75a).
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estimation with each new model formulation. To make our
point process likelihood approach more broadly applicable, we
showed that by representing the logarithm of the conditional
intensity function as a linear combination of general functions
of the covariates, the conditional intensity function model
could be efficiently fit to neural spike train data using the GLM
framework under a Poisson distribution and a log link function
(Eqs. 3, A6, and A8). We also showed that, equivalently, if the
point process is represented as a conditionally dependent Ber-
noulli process (Eqs. 2 and A2) and the probability of the events
is modeled by a logistic function, then the point process model
could also be fit using the GLM framework under a Bernoulli
distribution and a logistic link function (Eqs. 5 and A10).
Regarding the time discretization, we note that the 1-ms
discretization interval we chose should not be interpreted as the
absolute discretization interval for all applications of the point
process–GLM framework. How fine the discretization interval
should be will depend on the particular problem under study.

Our use of the Poisson distribution to fit point process
models does not mean that we are assuming that our original
data are Poisson. We are rather exploiting for computational
purposes the fact that all point process likelihoods that admit a
conditional intensity function, including those that are history
dependent, have the same mathematical form given by Eq. A6.
Our analysis makes explicit the relation between likelihood
methods for point processes, conditional Bernoulli processes,
and GLM model fitting with Poisson or Bernoulli distributions.

This relation provides a justification for using this GLM
framework to analyze spike trains as point process data.

The point process–GLM framework for analyzing neural
spike train data has several important advantages. First, this
framework allows us to formulate complex models to relate the
spiking activity to covariates. The fact that Eq. 4 is written in
terms of general functions of the covariates provides the
framework with a very large class of possible models. Second,
the GLM framework is part of several standard mathematical
and statistical packages (e.g., Splus, Matlab, SPSS), so that the
approach is readily accessible to experimentalists analyzing
their data. Even though likelihood-based methods are highly
desirable because of several optimality properties, the biggest
impediment to their widespread use is the lack of readily
available software in which a flexible class of neural spike train
models can be easily applied to data. The point process–GLM
framework offers a practical, broadly applicable solution to the
computational problem of fitting potentially complex point
process models for neural spike trains by maximum likelihood.

Third, the point process–GLM framework makes it possible
to apply a set of goodness-of-fit tools for point processes not
available in the GLM. These are the point process residuals
analysis, goodness-of-fit tests based on the time-rescaling the-
orem, and decoding from point process observations. Fourth,
the model selection and goodness-of-fit methods available in
GLM are extended to spike train data. Thus we have a set of
complementary methods to assess the extent to which proposed
models explain the structure in neural spike trains. Although
we used the point process–GLM framework to carry out most
of the analysis, we also illustrated with the conditional inten-
sity function based on the inhomogeneous inverse Gaussian
model how non-GLM point process likelihood models may be
used to analyze neural spike train data. Finally, by analogy
with the way in which linear regression methods are used to
analyze the relation between a continuous dependent variable
and a set of candidate explanatory variables, the ready avail-
ability of software to implement GLMs also makes it possible
for neurophysiologists to quickly assess the relevance of a wide
range of covariates before proceeding to construct more spe-
cific models that may require non-GLM algorithms to carry out
the model fitting.

A key objective of the proposed framework is to provide
tools for the assessment of the relative importance of the
covariates on neural spiking activity. We showed how this
objective is accomplished by analyzing the goodness-of-fit of

TABLE 1. Mean coverage probabilities, mean, and median errors
for the velocity, and the autoregressive spiking history plus
velocity models

Velocity (AR) History � Velocity

(�V�, �): Mean cov. prob. 0.30 � 0.10 0.24 � 0.08
�V�: Mean cov. prob. 0.32 � 0.10 0.27 � 0.08
�: Mean cov. prob. 0.94 � 0.02 0.90 � 0.04
(Vx , Vy): Mean error 3.60 � 0.3 3.60 � 0.4
(Vx , Vy): Median error 3.43 3.38
(Vx , Vy): Error (95% CI) (0, 7.8] (0, 7.8]
�: Mean error 0.15� � 0.1 0.14� � 0.1
�: Median error 0.11� 0.11�
�: Error (95% CI) (0, 0.65�] (0, 0.63�]

CI denotes the confidence interval. Velocity is given in cm/s.

FIG. 10. Neural decoding of (x, y) velocities and movement direction by the
point process filter. Estimated velocities (thick curve) and direction (red dots),
together with true velocities and direction, are shown for a single decoded test
trial. Time was discretized at a 1-ms resolution. At every millisecond, an
estimate of the velocity parameters was obtained based on the state of the cells
in the ensemble. All 20 recorded cells were used in the decoding. Conditional
intensity function for each cell was given by the velocity model. Original
decoding was done in polar coordinates. From a total of 130 trials, 120 trials
were used for model fitting and 10 test trials for neural decoding. See Table 1
for summary statistics over the entire ensemble of test trials.
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each model we proposed. Because no method provides a
complete assessment of goodness-of-fit, we used the standard
statistical approach of using multiple complementary measures
that evaluate different aspects of the model’s agreement with
the data. We applied 4 complementary types of goodness-of-fit
techniques in our example data set: Kolmogorov–Smirnov tests
based on the time-rescaling theorem, model selection by AIC,
point process residual analysis, and neural spike train decoding
based on point process observations.

First, the K-S analyses performed on the example data
problems were useful in providing a sense of how close our
models were to capturing the stochastic structure in the exam-
ple data sets. The fact that some of our models captured most
of the statistical structure in the spiking activity (Figs. 4 and 8)
suggests that developing a parsimonious statistical model of
MI activity is a realistic goal. The K-S plots also highlighted
the importance of the spiking history. The fact that the coef-
ficients had a structure that seemed to reflect mostly refractory
and recovery periods together with rebound excitation in short
time scales (effectively shorter than 60 ms) suggests that the
autoregressive component successfully captured important his-
tory effects.

Second, the AIC analysis provided additional information
for model comparison when the K-S plots did not distinguish
between different models. By finely ranking the different
models, the AIC analysis allowed for the assessment of the
distinct effects and relative importance of the 3 types of
covariates. Our choice of the AIC for model comparison was
motivated by the fact that AIC was derived to be an estimate of
the expected relative Kullback–Leibler distance between the
distributions generated by the model and the distribution of the
underlying stochastic process generating the data. The “true”
underlying model does not need to be in the set of tested
models for the AIC analysis to suggest the most appropriate
model, a situation that we believe is more often the rule than
the exception in biology. Because the AIC is penalized with
increasing numbers of model parameters, its use is more
appropriate than the use of the data likelihood itself in prevent-
ing overfitting of the data by the model. Additionally, an
equivalence between AIC and cross-validation in model com-
parison problems has been established (Stone 1977), and
model-based penalty methods (e.g., AIC) outperform cross-
validation in important aspects when assessing prediction per-
formance (Efron 2004). We also computed the Bayesian infor-
mation criterion (BIC) (Schwarz 1978), an alternate, more
conservative criterion function for each of our models and
found that it yielded the same model rankings as did the AIC.
When comparing complex models, another protection against
overfitting comes from having large quantities of data as
compared to the number of model parameters. In our example
the �106 data observations far outnumbered the maximum 200
or so parameters in our most complex models. Apparent
inconsistencies between AIC and K-S analyses could occur in
cases where, for example, the conditional intensity model is
more likely to produce the observed spike train as a whole, but
is less accurate in describing a specific aspect of the data
structure, such as the regime of small ISIs. This might have
been the case when comparing the AIC and K-S plots results
for the autoregressive spiking history plus velocity and ensem-
ble model and a simpler autoregressive spiking history plus
velocity model (Figs. 8 and 9).

Third, we illustrated how the point process residual analysis
can be used to assess the contribution of an extrinsic covariate
to a single neuron’s spiking activity. In the illustration exam-
ple, the residual analysis showed that the introduction of the
velocity covariate captured a significant amount of the statis-
tical structure related to hand velocity available in the spiking
activity of a single neuron. Yet, for the particular cell chosen in
this study, the analysis was also able to reveal that there still
was a significant amount of structure in the residuals that was
correlated to hand velocity but that was not captured by this
specific form of the velocity model. Cross-correlation analysis
of the point process residuals and extrinsic covariates is thus an
important tool for assessing whether a particular model has
captured well the effects of the covariate on the spiking
activity. The ideal model should produce a residual with no
significant correlations to the modeled covariate. It should also
be noted that, unlike the decoding analysis, the point process
residual analysis is not dependent on the properties of a
decoding algorithm.

Fourth, complementing the above 3 goodness-of-fit analysis
tools, the spike train decoding allowed for the goodness-of-fit
assessment at the neural ensemble level. In conjunction with
understanding what makes a neuron spike, we are also inter-
ested in assessing how well a model captures the representation
of an extrinsic covariate at the ensemble level. At present,
decoding is the only technique we have for assessing goodness-
of-fit at this level. The key elements for assessing goodness-
of-fit in the decoding analysis were the predicted signal and its
confidence intervals and coverage probability, and especially
the estimation error and its confidence intervals. The confi-
dence intervals and the coverage probability based on the
estimated posterior covariance matrix provided an estimate of
the amount of uncertainty in the decoding algorithm, whereas
the decoding error and its distribution provided a measure of
the algorithm’s actual performance. For this reason, the mean
coverage probability should be interpreted in conjunction with
the mean decoding error. As suggested by the narrow distri-
bution of the decoding error and approximately 0.95 mean
coverage probability (Table 1), hand movement direction was
remarkably well decoded. Velocity estimates in Cartesian co-
ordinates captured reasonably well slow fluctuations in the
measured hand velocity. We also illustrated how to assess the
contribution of the autoregressive spiking history component to
neural decoding. The autoregressive spiking history plus ve-
locity and the velocity models performed similarly well. This
preliminary result suggests that short time dynamics captured
by the autoregressive component did not play a crucial role in
decoding hand velocity or movement direction in this data set.
Given that the models used in the decoding analysis did not
include the ensemble or ensemble rates covariate, the ensemble
decoding assumed independent encoder cells. Nonetheless, the
framework also allows the assessment of the contribution of
interaction patterns in the neural ensemble to decoding. That
could be easily achieved by extending the conditional intensity
models to include the ensemble covariates. This analysis is
beyond the scope of this paper and will be addressed else-
where.

In summary, the above 4 complementary goodness-of-fit and
model selection analyses are an essential step for achieving our
primary objective of assessing the effects and relative impor-
tance of the modeled covariates. The proposed point process
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framework provides a starting point for building and analyzing
complex models of spiking activity including the 3 types of
covariates discussed in this paper. In particular, the point
process–GLM framework provides a systematic approach to
neural spike train data analysis analogous to that for continu-
ous-valued variables under the linear Gaussian regression
framework.

We foresee several potential improvements and extensions
of this framework. Although we were able to fit models with
hundreds of parameters, much larger models will require the
development of efficient algorithms for both GLM and non-
GLM computations. Also, to analyze the relation between the
simultaneous firing of an entire ensemble relative to its spiking
history and a set of extrinsic covariates, we can extend the
framework by using multivariate point process likelihoods
(Chornoboy et al. 1988). A multivariate likelihood model will
facilitate the study of the independence, redundancy, and
synergy in the ensemble representation. Finally, multielectrode
devices (Csicsvari et al. 2003; Donoghue 2002; Nicolelis et al.
2003) now make possible the simultaneous recordings of
multiple single cells from many different brain areas. We
foresee the proposed framework as a valuable tool for inves-
tigating how interacting brain regions represent, compute, and
process information. We are currently applying this framework
to the analysis of parietal and MI spiking activity in monkeys
performing visuomotor tracking tasks and hippocampus activ-
ity in rats performing a range of learning tasks.

A P P E N D I X

Continuous and discrete time point process
likelihood function

The likelihood of a neural spike train, like that of any statistical
model, is defined by finding the joint probability density of the data.
We show below that the joint probability of any point process is easy
to derive from the conditional intensity function. We show that the
point process likelihood function in Eqs. 2 and 3 gives a discrete time
approximation of the likelihood function for a continuous time point
process (Eq. A6 below).

Let 0 � u1 � u2, . . . , uJ � T be a set of neural spike train
measurements. Using the discrete time representation given in the
METHODS section, define the events

Ak � 
spike in �tk	1, tk� � Hk�

Ek � 
Ak�
�Nk 
Ak

c�1	�Nk

Hk � ��
j�1

k	1

Ej� (A1)

for k � 1, . . . , K and where Ak
c is the complement of Ak. For

simplicity, Hk includes only the intrinsic history of the process. It can
be easily extended to incorporate neural ensemble activity and other
extrinsic covariates. By construction of the partition of the interval (0,
T], introduced in the METHODS section, we must have uj � �tkj	1, tkj

],
j � 1, . . . , J, for a subset of the intervals satisfying k1 � k2 � . . . �
kj. The remaining K 	 J intervals have no spikes.

The probability of exactly J events occurring within the intervals
�tkj	1, tkj

]j�1
J in (0, T], may then be computed as

P�N1:K� � P�uj � �tkj	1, tkj
�, j � 1, . . . , J, � N(T� � J)

� �
k�1

K

P�Ak�
�NkP�Ak

c�1	�Nk (A2)

by the definition of Ak and Ek in Eq. A1.

The spike train thus forms a sequence of conditionally independent
Bernoulli trials, with the probability of a spike in the kth time interval
given by P(Ak). In any interval (tk	1, tk] we have

P�Ak� � ��tk � Hk�� � o���

P�Ak
c� � 1 � ��tk � Hk�� � o��� (A3)

Substituting Eq. A3 into Eq. A2 yields

P�N1:K� � �
k�1

K

���tk � Hk����Nk�1 � ��tk � Hk���1	�Nk � o��J� (A4)

which is Eq. 2. For small �, [1 	 �(tk)�] � exp{	�(tk)�} and
log [�(tk)�[1 	 �(tk)�]	1] � log (�(tk)�), therefore we obtain

P�N1:K� � �
k�1

K

���tk � Hk����Nk�1 � ��tk � Hk���	�Nk �
k�1

K

�1 � ��tk � Hk��� � o��J�

� �
k�1

K � ��tk � Hk��

1 � ��tk � Hk��
��Nk

�
k�1

K

exp
	��tk � Hk��� � o��J�

� exp��
k�1

K

log ���tk � Hk����Nk � �
k�1

K

��tk � Hk���� o��J� (A5)

The probability density of these J exact spikes in (0, T], given by
p�N0:T� � lim�30 P�N1:K�/�J, is then obtained as

P�N0:T� � lim
�30

exp��
k�1

K

log ���tk � Hk����Nk � �
k�1

K

��tk � Hk���� o��J�

�J

� lim
�30

exp��
k�1

K

log ��tk � Hk��Nk � �
k�1

K

��tk � Hk����J � o��J�

�J

� exp��
0

T

log ��t � H�t��dN�t� ��
0

T

��t � H�t��dt� (A6)

which is the joint probability density of the point process spike
train in continuous time (Brown et al. 2003; Daley and Vere-Jones
2003). Note that we could have derived the likelihood for the
continuous time point process (and therefore also Eq. 3) by a
generalization of the continuous time Poisson process (Daley and
Vere-Jones 2003), without resorting to representing the neural
point process as a conditional Bernoulli process. We formulated
the spike train joint probability in terms of Eq. A2 only to show
(see below) the equivalence between Poisson and Bernoulli–GLMs
when � is sufficiently small.

The Poisson and Bernoulli–GLMs

We briefly define a generalized linear model and show that for
small enough �, the Bernoulli and Poisson–GLMs are equivalent in
the modeling of spiking train data.

Two main aspects characterize a generalized linear model of a
random variable y (McCullagh and Nelder 1989). First, the mod-
eled random variable y has a distribution in the exponential family.
Among several members of this family are the Gaussian, the
Poisson, and the Bernoulli distribution. The exponential family has
the general form
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f�y � �, �� � exp
�y� � b����/a��� � c�y, ��� (A7)

where a( � ), b( � ), and c( � ) are some specific functions. If � is
known, this is an exponential-family model with canonical param-
eter �.

For the particular case of the Poisson distribution, � � log�,
b(�) � e�, a(�) � � � 1, c(y, �) � 	log (y!). The location and scale
parameters are � and �, respectively. Thus the distribution in Eq. A7
can be expressed as f(y � �) � exp{y log � 	 � 	 log (y!)} �
�ye	�/y!. Note that the canonical parameter � has, in the Poisson
case, a natural representation in terms of the logarithm of the param-
eter �. The joint probability distribution for an independently distrib-
uted data set y � {yk}k�1

K becomes

f�y � �, �� � exp��
k�1

K

yk log �k � �
k�1

K

�k� (A8)

If the rate function �k of this Poisson process is generalized by the
conditional intensity function (Eq. 1); and yk � �Nk, � � 1, then Eq.
A8 has the same form as the typical general likelihood function for
any discrete time point process (Eqs. 3 and A5).

For the Bernoulli case, we let y � {0, 1} with the probability of
success denoted by P, and set � � log ([1 	 P]	1P), b(�) � log(1 �
e�), a(�) � �, c( � ) � 1, and � � 1. Thus, for single realizations we
have p(y � P) � Py(1 	 P)1	y. Given an independently distributed
data set y � {yk}k�1

K , the likelihood function under the Bernoulli
distribution becomes

f�y � �, �)��
k�1

K

�Pk�
yk�1 � Pk�

1	yk (A9)

By letting �Pk�
yk � P�Ak�

�Nk we obtain Eq. A2.
Second, the defining feature of a generalized linear model follows.

The canonical parameter of the exponential family is expressed in a
linear form by a transformation given by a monotonic differentiable
function. In the Poisson case, if the canonical parameter is modeled as
a linear combination of general functions of covariates v of interest
(that is, � � log �(�, v) � �i�1

q �igi (vi) as in Eq. 4 or equivalently
as �(�, v) � exp{�i�1

q �igi(vi)} as in Eqs. 5–10), then f(y � �, �) �
exp{y log �(�, v) 	 �(�, v)} gives the distribution for a GLM under
a Poisson distribution and a log link function. In the Bernoulli case, if
� � log ([1 	 P(Ak � �, Hk)]

	1P(Ak � �, Hk)) is modeled as linear
combination of general functions of the covariates, then Eqs. 2 and A2
give the likelihood function for a GLM under a Bernoulli distribution
and a logistic link function.

Finally, we establish the relation between the Poisson and
Bernoulli–GLMs in the context of neural point process models. After
making explicit the parametric model of the conditional intensity
function, we have the probability of a spike event in the time interval
(tk	1, tk] given by P(Ak � �, Hk) � �(tk � �, Hk)� � o(�). For small �

log � P�Ak � �, Hk�

1 � P�Ak � �, Hk�
� 	 log ���tk � �, Hk��� (A10)

Therefore, for small enough �, the Bernoulli and Poisson–GLMs are
equivalent when applied to the modeling of spiking train data.

The IIG model for the ISI probability density

For a particular cell, let te � tk � uNk	1
denote the time elapsed

since the last spike uNk	1
. The inhomogeneous inverse Gaussian ISI

probability density function conditioned on the motor covariate and
neural ensemble activity is defined as

p�te � G� �
s�tk � � �

�2���
uNk	1

tk

s�t � � �dt�3�1/2 exp
	
1

2

��
uNk	1

tk

s�t � � �dt � �2

2 �
uNk	1

tk

s�t � � �dt 
(A11)

where G � {uNk	1
, xk��, N1:k

1:C, �},  � 0 is the location parameter and
s(tk � � ) � 0 is the scaling parameter at time tk, conditioned on the extrinsic and
ensemble rates covariates as given in Eq. 13.
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