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Temporal Coding of Visual Information in the Thalamus

Pamela Reinagel and R. Clay Reid

Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115

The amount of information a sensory neuron carries about a
stimulus is directly related to response reliability. We recorded
from individual neurons in the cat lateral geniculate nucleus
(LGN) while presenting randomly modulated visual stimuli. The
responses to repeated stimuli were reproducible, whereas the
responses evoked by nonrepeated stimuli drawn from the same
ensemble were variable. Stimulus-dependent information was
quantified directly from the difference in entropy of these neural
responses. We show that a single LGN cell can encode much
more visual information than had been demonstrated previously,
ranging from 15 to 102 bits/sec across our sample of cells.
Information rate was correlated with the firing rate of the cell, for
a consistent rate of 3.6 = 0.6 bits/spike (mean = SD). This

information can primarily be attributed to the high temporal
precision with which firing probability is modulated; many indi-
vidual spikes were timed with better than 1 msec precision. We
introduce a way to estimate the amount of information encoded
in temporal patterns of firing, as distinct from the information in
the time varying firing rate at any temporal resolution. Using this
method, we find that temporal patterns sometimes introduce
redundancy but often encode visual information. The contribu-
tion of temporal patterns ranged from —3.4 to +25.5 bits/sec or
from —9.4 to +24.9% of the total information content of the
responses.
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Cells in the lateral geniculate nucleus of the thalamus (LGN)
respond to spatial and temporal changes in light intensity within
their receptive fields. The collective responses of many such cells
constitute the input to visual cortex. All stimulus discrimination at
the perceptual level must ultimately be supported by reliable dif-
ferences in the neural response at the level of the LGN cell
population. We are therefore interested in measuring the statistical
discriminability of LGN responses elicited by different visual
stimuli.

It has been shown that the LGN can respond to visual stimuli
with remarkable temporal precision (Reich et al., 1997). This
implies that LGN neurons have the capability to signal information
at high rates. Previous estimates of the information in LGN re-
sponses have used two general approaches. The first approach,
stimulus reconstruction, relies on an explicit model of what the
neuron is encoding, as well as an algorithm for decoding it (Bialek
et al., 1991; Rieke et al., 1997). This method has been used to place
lower bounds on the information encoded by single neurons (Rei-
nagel et al., 1999) or pairs of neurons (Dan et al., 1998) in the LGN
in response to dynamic visual stimuli.

The second approach, the “direct” method, relies instead on
statistical properties of the responses to different stimuli (the en-
tropy of the responses). Because this involves only comparisons of
spike trains, without reference to stimulus parameters, we need not
know what features of the stimulus the cell encodes. Analysis of
this type can be simplified by using a small set of stimuli and
describing neural responses in terms of a few parameters, as has
been done in previous studies of the LGN (Eckhorn and Popel,
1975; McClurkin et al., 1991).

Recently, a version of the direct method has been developed that
can be applied to the detailed firing patterns of neurons in response
to arbitrarily complex stimuli (Strong et al., 1998). This method
provides a direct measure of how much information is contained in
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a neural response, in the sense that the method is independent of
any assumptions about what the neuron represents or how that
information is represented. The information could be encoded at
any temporal resolution and could involve any kind of temporal
pattern. Here we apply this method to study the responses of
individual LGN cells to a complex (high-entropy) temporal
stimulus.

Because the direct method does not constrain either the tempo-
ral resolution of the code or the role of temporal patterns, the result
does not by itself tell us anything about how LGN cells encode
stimuli. We therefore present two further analyses. First, we ex-
plore the temporal resolution of the neural code. Second, we
introduce a measure of the contribution of temporal patterns.

We distinguish three broad possibilities: (1) temporal patterns
do not exist or are irrelevant to the neural code; (2) temporal
patterns exist and make the neural code more redundant; or (3)
temporal patterns exist and encode useful information. In our data,
we find a range of results. Some cells encode information redun-
dantly, whereas others use temporal patterns to encode visual
information. In the latter case, to extract all the information from
the spike trains, it would be necessary to consider temporal firing
patterns; the time-varying instantaneous probability of firing would
not be sufficient at any temporal resolution.

MATERIALS AND METHODS
Experimental

Surgery and preparation. Cats were initially anesthetized with ketamine
HCI (20 mg/kg, i.m.) followed by sodium thiopental (20 mg/kg, i.v.,
supplemented as needed and continued at 2-3 mg - kg~' - hr™' for the
duration of the experiment). The animals were then ventilated through an
endotracheal tube. Electrocardiograms, electroencephalograms, tempera-
ture, and expired CO, were monitored continuously. Animals were para-
lyzed with Norcuron (0.3 mg - kg ~' - hr 71, i.v.). Eyes were refracted, fitted
with appropriate contact lenses, and focused on a tangent screen. Elec-
trodes were introduced through a 0.5 cm diameter craniotomy over the
LGN. All surgical and experimental procedures were in accordance with
National Institutes of Health and United States Department of Agriculture
guidelines and were approved by the Harvard Medical Area Standing
Committee on Animals.

Electrical recording. Single LGN neurons in the A laminae of the LGN
were recorded with plastic-coated tungsten electrodes (AM Systems, Ever-
ett, WA). In some experiments, single units were recorded with electrodes
of a multielectrode array (System Eckhorn Thomas Recording, Marburg,
Germany). Recorded voltage signals were amplified, filtered, and passed to
a personal computer running DataWave (Longmont, CO) Discovery soft-
ware, and spike times were determined to 0.1 msec resolution. Preliminary
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spike discrimination was done during the experiment, but analysis is based
on a more rigorous spike sorting from postprocessing of the recorded
waveforms. The power spectra of the spike trains did not contain a peak at
the stimulus frame rate (128 Hz).

For the purposes of this analysis, it is crucial that any trial-to-trial
variability in the recorded response be unequivocally attributable to neural
noise rather than noise introduced at the level of data acquisition. There-
fore, we report here only the results from extremely well isolated single
units, with strict absolute refractory periods and spike amplitudes several
SDs above the noise. Voltage traces surrounding each spike were examined
for spike shape, as well as for precision of recorded spike times. Of the 27
cells recorded, 13 cells were excluded for imperfect spike isolation, and
one cell was excluded because it responded poorly (<1 spike/sec) to our
stimulus. The remaining recordings we believe to be entirely free of errors
in the form of missed spikes, extraneous spikes, or spike time jitter greater
than 0.1 msec. Furthermore, we used Monte Carlo simulations to simulate
the effects of contamination with such errors, had they been present. We
showed that if 2% of spikes were missed, 2% extraneous events were
recorded as spikes, or 2% of spike times were jittered by the width of a
spike, our information estimate would have decreased by 1.4, 2.8, or 0.1%,
respectively.

We define a “burst” as a group of action potentials, each of which is <4
msec apart, preceded by a period of >100 msec without spiking activity.
This criterion was shown previously to reliably identify bursts that are
caused by low-threshold calcium spikes in LGN relay cells of the cat (Lu et
al., 1992). We define the “burst fraction” of a spike train as the fraction of
all spikes that were part of a burst.

Visual stimuli. A spatially uniform (full-field) white-noise visual stimulus
was constructed by randomly selecting a new luminance every 7.8 msec
(Fig. 1a, stim). The luminance values were drawn from a natural proba-
bility distribution (van Hateren, 1997), but the stimulus was otherwise
artificial and had no temporal correlation between frames. The resulting
stimulus had an entropy of 7.2 bits/frame [3,; P(i) log2 P(i), where P(i) is the
probability of luminance ], for a rate of 924.4 bits/sec, which well exceeds
the coding capacity (i.e., the measured entropy) of individual neural
responses. The intensity distribution was dominated by low intensities,
such that luminance was <33% of the maximum in 73% of frames, and
changed by <33% of the total range in 77% of transitions. This produced
moderate contrast compared with, for instance, a binary black-to-white
flicker (variance, 0.04 vs 0.25).

We constructed a single 20-min-long stimulus consisting of 128 repeats
of a single 8 sec sample interleaved with 32 unique 8 sec samples. We
presented this 20 min composite stimulus in a single continuous trial. Most
cells responded well to this modulated full-field stimulus. Stimuli were
presented on a computer monitor controlled by a personal computer with
an AT-Vista graphics card, at 128 Hz and 8 bit gray scale, at a photopic
mean luminance.

Numeric calculations

We measured the visual information in neural responses by measuring
entropy rates from probability distributions of neural responses, as ex-
plained in Results (Fig. 2). First, neural responses were represented as
binned spike trains in which the value of a time bin was equal to the
number of spikes that occurred during that time interval. Then we ana-
lyzed short strings of bins, or words. This representation depends on two
parameters, which we varied: the size of the time bins, 67, and the number
of bins in the words, L. We measured two forms of response entropy, the
noise entropy, H,.., which reflects the trial-to-trial variability of re-
sponses to a repeated stimulus, and the total entropy, H,,,,, which reflects
the variability of responses to all (nonrepeated) stimuli in the ensemble.
H .. was calculated from the distribution of responses at a fixed time ¢
relative to stimulus onset, in 128 repeats of the same sample of the
white-noise stimulus. We performed a separate calculation of H, ;. for
many different values of ¢ (separated by one bin) within the 8 sec stimulus.
We then averaged the result over all values of ¢ to get the average noise
entropy. H,,., was calculated in the identical manner. We estimated the
entropy from the distribution of responses over responses to 256 unique
stimuli at each time ¢ and then averaged the result over .

Data adequacy for entropy calculations. In any analysis of this kind,
misleading results could be obtained if the amount of data were insufficient
for estimating the probabilities of each response. In pilot studies with 1024
repeats, we estimated that 128 repeats were adequate for measuring the
entropy of repeated stimuli. We used twice as many samples for H,, as
for H,.,. to compensate for the approximately twofold difference in
entropy. For every entropy we computed, we determined how our estimate
of H converged as we used increasing fractions of the data and then
corrected for finite data size according to the method of Strong et al.
(1998). The correction is obtained by fitting a second-order polynomial to
1/(fraction of data) versus estimate. We imposed two criteria to ensure
data adequacy. First, we required that the total correction for finite data
size was <10%. Second, we required that the second-order term of this
correction was negligible, <1%. Two cells were discarded from analysis
because of data inadequacy by these criteria.

We extrapolated to infinite word length from the linear part of the curve
H versus 1/L (see Results) (Fig. 2¢) as described by Strong et al. (1998).
Specifically, we found the point of minimum fractional change in slope in
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each curve and used the four values of L up to and including this point for
extrapolation to infinite L.

Similar information rates and pattern effects were obtained using fewer
or more samples to estimate H,, and using several alternative criteria for
data adequacy (data not shown).

RESULTS

Neural responses to a dynamic visual stimulus

We recorded from individual neurons in the LGN of anesthetized
cats while presenting spatially uniform (full-field) visual stimuli
with a random time-varying luminance. We repeated one 8 sec
sample of this white-noise stimulus 128 times, interleaved among
256 sec of unique samples. We report results from 11 exceptionally
well isolated cells. Results from one example cell are shown in
Figures 1-4.

The responses to different stimulus samples were highly variable
(Fig. la, unique), whereas the responses to any repeated sample
were highly reliable (Fig. la, repeat). From the peristimulus time
histogram (PSTH) (Fig. la, PSTH), it is apparent that any given
stimulus evoked very precise responses. When examined at a fine
scale, many of the peaks in the PSTH have widths of ~1 msec (Fig.
16) (o = 0.6 msec). This is somewhat higher than the temporal
precision seen by Reich and colleagues in LGN responses to
high-contrast drifting gratings (o = 5 msec) (Reich et al., 1997) or
the precision reported in the retina of other species (Berry et al.,
1997). To explore the implications of this precise timing for visual
coding, we turned to an information theoretic approach.

Information measured directly from spike train entropy

A neural response encodes information when there is a narrow
distribution of responses to any given stimulus when it is repeated
(Fig. la, repeat) compared with the distribution of possible re-
sponses to all stimuli (Fig. la, unique). The variability underlying
these probability distributions can be quantified by their entropy
(Shannon, 1948). The total entropy, Hy,,, is measured from the
responses to unique stimuli and reflects the range of responses used
for representing the entire stimulus ensemble. The total entropy
sets an upper bound on the amount of visual information that could
be encoded by the responses. This limit is reached only if there is
no noise, meaning that the response to any given stimulus is
deterministic. The trial-to-trial variability in the responses to a
repeated stimulus is given by the noise entropy, H, ;... In general,
the visual information in the response (/) can be measured by
subtracting the average noise entropy from the total entropy
(DeWeese, 1996; Zador, 1996; Strong et al., 1998):
I= Htotal - Hnoise (1)
Throughout this paper, we divide both entropy (H) and informa-
tion (I) estimates by duration in time, such that all estimates are
reported as entropy or information rates in units of bits per sec.
To compute these quantities, we represented neural responses as
binned spike trains in which the value of a time bin was equal to the
number of spikes that occurred during that time interval. We then
considered the probability distributions of short strings of bins, or
words. The resulting estimate of entropy depends on two parame-
ters: the temporal resolution of the bins in seconds, &7, and the
number of consecutive bins in our words, L (Fig. 2d) (Strong et al.,
1998):

P(w)log,P(w)

1
H(L,81) = = ;5= 2 ()

weW(L,57)

where w is a specific word (spike pattern), W(L,87) is the set of all
possible words comprised of L bins of width ér, and P(w) is the
probability of observing pattern w in a set of observations.

For any given word length L and resolution 67, we counted the
number of times each distinct word occurred in the responses, for
either the total stimulus ensemble (Fig. 2a, H,,,) or repeated
stimulus samples (Fig. 2b, H,,;..). From the corresponding proba-
bility distributions, we estimated the entropy of the response (Eq.
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Figure 1. LGN responses to nonrepeated and repeated white-noise stimuli. Responses from an ON center X cell are shown (the cell in our sample that

responded best to the full-field stimulus). a, Responses to 128 unique samples of the visual stimulus are shown at the top as rasters (unique) in which each
row represents a different 1 sec segment of the neural response, and each dot represents the time of occurrence of a spike. Below the rasters is a PSTH
from the 128 rasters, in which the value for each 1 msec bin is defined as the number of times a spike was observed in that bin in the 128 trials shown.
The second set of rasters (repeat) and corresponding PSTH are from 128 repeats of one particular 1 sec sample of the white-noise visual stimulus. In the
experiment, repeat and unique samples were interleaved but occurred in the order shown. The luminance time course of the stimulus that corresponds to
the repeat rasters and PSTH is plotted at the bottom. The peak expanded in b is marked with an asterisk. The rasters expanded in ¢ are marked by the
bar. b, A narrow peak from PSTH in g, expanded and binned at 0.2 msec resolution. The peak defined by the shaded area (126 spikes in 128 repeats) was
best fit by a Gaussian of o = 0.60 msec, also shown. ¢, Expanded rasters chosen to illustrate noise. In the first half of this window, 95 of 128 trials contained
a single spike, but only two trials contained two spikes. In the second half of the window, only 17 trials contained any spikes but then usually a pair of spikes

~5 msec apart. Finally, 16 of the 17 trials containing any spikes in the second half of the window lacked spikes in the first half.

2). Assuming sufficient data, this method sets an upper bound on
the entropy rate. The true entropy rate is reached in the limit of
sufficiently small time bins and infinitely long words, which we
estimated by extrapolating to infinite L (Eq. 2, lim L — %, 7 = 0.6
msec) (Strong et al., 1998), as illustrated in Figure 2c. From the
extrapolated entropy rates and Equation 1, we obtained our best
estimate of the mutual information between the spike train and the
stimulus.

According to this method, the responses shown in Figure 1
contain 102 bits/sec of visual information about this stimulus set,
which is about an order of magnitude higher than had been dem-
onstrated previously in the LGN (Eckhorn and Popel, 1975; Mc-
Clurkin et al., 1991; Dan et al., 1998; Reinagel et al., 1999). The
meaning of 102 bits/sec is that the spike train contains as much
information as would be required to perfectly discriminate 2 '
different 1-sec-long samples of this white-noise stimulus. Another
way to state the same finding is that this neural response contains
enough information to support a reliable binary stimulus discrim-
ination approximately every 10 msec. This conclusion is free of
assumptions about the nature of the neural code and consequently
tells us little about that code. To explore how this information is
represented, we went on to compare the information rate to the
estimates obtained with varying bin size and word length.

Temporal resolution of visual information

First, we asked how our estimate of encoded information depended
on the temporal resolution of analysis, 67. At each temporal reso-
lution, we computed several estimates as a function of word length
L (Egs. 1, 2) and then extrapolated to infinitely long words. In long
time bins (87 > 64), the number of spikes was almost constant and

therefore carried little information about the dynamic stimulus.
Our estimate of the visual information increased with the temporal
resolution of the analysis (Fig. 3). The estimate continued to
increase with temporal precision to the smallest bin size we ana-
lyzed, 0.6 msec, which is consistent with the high temporal preci-
sion evident in the PSTH (Fig. 1). To account for all of the
information in the response (102 bits/sec), a resolution of at least
67 = 0.6 msec was required, which is well below the refractory
period of the neuron (2.7 msec) (Fig. 3, a). This implies that the
timing of a single spike can be much more precise than the smallest
interval between spikes.

Measuring the effect of temporal structure on coding

The previous analysis allowed for the possibility of any temporal
structure within the spike train. There are many known physiolog-
ical properties that would result in temporal patterns in the re-
sponse, such as absolute and relative refractory periods and the
presence of stereotyped bursts. Such patterns result in statistical
dependence between time bins. However, it is not obvious what
role these patterns play in coding visual information.

The probability of firing clearly varies with time (Fig. la, PSTH ).
We would neglect any additional temporal structure in the spike
train if we simply considered the information in the average single
time bin (Egs. 1, 2, L = 1), instead of using long words. The
information rate estimated from L = 1 represents an approxima-
tion on the assumption of independence between bins. If each bin
were indeed independent of other bins (that is, if there were no
further temporal interactions between bins beyond those reflected
in the PSTH), then the information rate calculated at any word
length L would be equal to that calculated with L = 1.
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Figure 2. Illustration of calculation of mutual information. Data are same as shown in Figure 1. a, Probability distribution of words of length L = 8, binned

at 87 = 1, for the calculation of H,,,. P(w) for w = 00000000 is far off scale (0.70). Although 2® patterns were possible, only 26 actually occurred (n =
31776). Inset, Samples from five responses to nonrepeated stimuli (Fig. 1a, unique). Several eight bin words are highlighted. b, Probability distribution of
words of length L = 8, binned at 87 = 1, for the calculation of H, ;. at one particular word position. Over 128 repeats, only 13 patterns were observed
at this position of the 26 patterns observed for the entire stimulus ensemble (a). Inset, Samples from eight of the 128 responses to the repeated stimulus
(Fig. 1a, repeat). A particular eight bin word is highlighted, which corresponds to a fixed time in the repeated stimulus. ¢, Estimated entropy rate of the
responses, H (Eq. 2), is plotted against the reciprocal of word length, 1/L. Note that longer words are to the left in this plot. Both H,, (fop) and H, ;.
(bottom) decrease gradually with increasing L, as expected if there are any correlations between bins. For very long words, H ;.. and H,,, fall off
catastrophically, which indicates that there are not enough data for the calculation beyond this point. Dashed lines show the extrapolations from the linear
part of these curves to infinitely long words (lim L — =), as described by Strong et al. (1998). The point of least fractional change in slope was used as
the maximum word length L (arrows) used for extrapolations. Mutual information / is the difference between these two curves (Eq. 1). d, Parameter space
of the calculation. / is estimated over a range of L (plotted as 1/L, horizontal axis) and a range of 87 (vertical axis). The resulting estimate (L, 87) obtained
with different parameter values is indicated by color (interpolated from discrete samples). Values to the left of the gap reflect extrapolations to infinite word
length (lim L — =, i.e., 1/L — 0). Arrows indicate slices through parameter space: L = o (vertical arrow, replotted in Fig. 3) and ér = 1 (horizontal arrow,
replotted in Fig. 4). Point at origin indicates the true information rate, which is obtained in the limit L — o at sufficiently small 87. (With finite data, the
estimate is not well behaved in the limit of 7 = 0).

We introduce a new quantity Z for the correction in our infor- was positive. The estimate obtained at 1 msec resolution but

mation estimate when we take temporal patterns into account
compared with the estimate we would have obtained if we had
ignored them:

Z(87) = lim I(L, 67) — I(L = 1, 7)

L —»

3)

For a discussion of how Z relates to other quantities, see Appendix.

If temporal patterns as such encode visual information, then the
pattern correction term Z is positive, because one time bin is
synergistic with other bins in encoding information. Conversely, if
temporal patterns merely introduce redundancy into the neural
code, the pattern correction Z is negative, because the stimulus
information conveyed by one time bin is partly redundant with the
information contained in other bins.

For the responses shown in Figures 1-3, the pattern correction Z

neglecting patterns, I(L = 1,87 = 1), was 79 bits/sec, whereas our
best estimate of the true information at this resolution, I(lim L —
o, 87 = 1) was 97 bits/sec (Fig. 3) for a pattern correction Z(ét =
1) = +18 bits/sec. Thus, not only is information encoded in spike
timing at 1 msec resolution, but extended patterns of spikes must be
considered to obtain all of this information. At even higher tem-
poral resolution, Z (87 = 0.6) = 25 bits/sec, which indicates that
patterns accounted for 25 of the 102 bits/sec total information. The
strength of this analysis is that the information we attribute to spike
patterns (Z) is completely distinct from the information attribut-
able to the temporal precision of firing-rate modulation (PSTH).

As we increased the word length L at 67 = 1 msec, our estimate
of the mutual information increased gradually (Fig. 4, filled sym-
bols). Using a lower resolution analysis to explore longer time
windows (L < 10, 7 > 1 msec), we found evidence for pattern
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Figure 3. Temporal resolution of visual information. For each bin size &7
(horizontal axis), we computed the mutual information between stimulus
and response (Eq. 1) from the distribution of observed firing patterns (Eq.
2), over a range of word lengths L. Data are from Figure 2d. Results shown
are the extrapolations to lim L — o at each temporal resolution. Arrowheads
indicate notable time scales in the data (see Discussion): a, absolute
refractory period (2.7 msec); b, mode interspike interval (4.0 msec); c,
stimulus frame rate (7.8 msec); d, duration of main peak of impulse
response of the neuron (20.0 msec); e, mean interspike interval (24.4 msec).

information up to at least 64 msec (data not shown). We note that
even short words often contain more than one spike. At this
temporal resolution (87 = 1 msec), there were no words with
multiple spikes up to L = 3 because of the refractory period of the
cell. For longer words (L = 4), the fraction of nonempty words that
contained multiple spikes increased linearly with word length,
crossing 12.5% at L = 10.

We suggest that the information in firing patterns is the result of
temporal structure within the spike trains that occur on a short time
scale. To test this, we performed a control in which words were
composed not from L contiguous bins but from L bins well sepa-
rated in time (chosen randomly from 8 sec samples). To compute
H, i a set of words was extracted using the same bins from each
repeat. In these words of nonadjacent bins, our estimate of the
information rate depended only very weakly on word length (Fig. 4,
scrambled). This confirmed that the relevant temporal interactions
are local in time.

Population results

Among the 11 cells we analyzed, we obtained a range of firing rates
in response to this full-field white-noise stimulus. Absolute infor-
mation rate was strongly correlated with firing rate, such that the
information encoded per spike was relatively constant at 3—4 bits/
spike (Fig. 5a). Coding efficiency can be defined as the fraction of
response entropy at a given bin size 67 that is used to carry stimulus
information (Rieke et al., 1997). A perfectly noise-free code would
have an efficiency of 1. Based on our analysis, we estimated the
coding efficiency as I/H,,,;, computed at lim L— o, 7 = 1. Over
our population of cells, estimated coding efficiency was 0.53 * 0.10
(mean = SD).

All cells showed a precision of spike timing of 2 msec or better.
The estimate obtained at 67 = 1 msec was 6% higher than the
estimate at 67 = 2 msec in the example shown in Figure 3. The
estimate at 87 = 1 msec was higher than at 67 = 2 msec for 9 of 11
cells (increasing by 10 * 2%). For the remaining 2 of 11 cells,
estimates at 87 = 1 and 2 msec differed by <1%, but estimates at
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ot = 2 msec were higher than estimates at 67 = 4 msec (by 23 =
9%).

Not all cells encoded information in spike patterns. Analyzed at
1 msec resolution, the pattern correction Z ranged from —9.4 to
+18.6%, or —3.4 to +18.0 bits/sec. The pattern correction was
correlated with the firing rate of the response, but this trend was
not statistically significant (p = 0.07) (Fig. 5b). For Figures 1-4, we
selected a cell with a particularly high firing rate and a large,
positive Z to demonstrate a strong example of information in spike
patterns.

One of our cells showed a substantial net redundancy in spike
patterns, with a pattern correction of —9.4% or —3.4 bits/sec.
Interestingly, this cell had a high frequency of bursting, a firing
pattern characteristic of LGN cells (Sherman, 1996). In our sample,
the frequency of bursting ranged from 0 to 15% (see Materials and
Methods) and was inversely correlated with Z (p < 0.005) (Fig. 5¢).

Simulations

To gain insight into what kinds of neural mechanisms could pro-
duce either 0, negative, or positive Z, we analyzed three kinds of
artificial spike trains. In condition A, spike trains were generated by
a Poisson process according to a time-varying firing rate taken
from that of a real neuron (Fig. 1a, PSTH ). Thus firing probability
was modulated with the same high temporal precision as the cell.
However, the estimate of information did not vary with word length
L, such that Z = 0 (Fig. 4, Poisson).

In condition B, spike trains were generated exactly as in A, but
for every spike generated in A, a doublet of spikes several milli-
seconds apart was produced in B. In this case, separate 1 msec time
bins carried partly redundant information, which would be “count-
ed twice” if bins were assumed to be independent. Thus, we
predicted that this kind of temporal structure would add redun-
dancy to the neural code. Indeed, the estimate of information using
L = 1 was an almost twofold overestimate of the true information
(compared with lim L — «). Therefore, the pattern correction was

negative: Z = —44%. This model suggests a simple explanation for
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Figure 4. Effect of word length on estimated visual information. Informa-
tion I between the neural response and the visual stimulus (Eq. 1) as a
function of the reciprocal of word length 1/L, computed at temporal
resolution 67 = 1.0 msec. Data are from Figure 2d. Filled circles, Word
lengths that satisfied our data adequacy criterion (see Materials and Meth-
ods). Open circles, Word lengths that failed our criterion (insufficient data).
Dashed line, scrambled, Words composed of bins far apart in time (chosen
randomly from throughout 8 sec samples). Thin solid line, Poisson, Results
for a Poisson model spike train whose time-varying rate matched the PSTH
of this cell (Fig. 1a).
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Figure 5. Summary of results for all cells in this study. Each filled circle represents one cell. Results are shown for lim L — % and 87 = 1.0 msec. Circled
symbol is the cell shown in Figures 1-4. Open circle is that cell analyzed at 67 = 0.6 msec. a, Mutual information, /, in units of bits per spike (vertical axis)
versus units of bits per seconds (horizontal axis). b, Pattern correction Z, expressed as a fraction of total information, Z/I(lim L — =), is plotted as a
function of the average firing rate of the response of the cell. Line shown is least square fit to data: slope, +0.42% per Hertz. This trend is not statistically
significant (R? = 0.31, p = 0.07). c, Pattern correction Z plotted as a function of the burst fraction of the spike train (see Materials and Methods). Line
shown is least square fit to data: slope, —1.1% per percent bursting. This relationship is highly statistically significant (R? = 0.60, p < 0.005).

why cells with stereotyped bursts showed temporal redundancy
(low or negative Z).

Finally, in condition C, spike trains were generated as in A, but
noise was added in the form of spike time jitter. Nearby spikes were
jittered by a correlated amount, simulating a low-frequency noise
source. The result was that the precision of individual spikes was
degraded, but local temporal patterns were preserved. In this case,
the noise (temporal jitter) would be counted twice if bins were
assumed to be independent (L = 1). Thus, we predicted that
responses would be more reproducible at the level of words than
one would expect from the variability of each bin. Simulations
confirmed that, in spike trains of this kind, L = 1 produced an
underestimate of the true visual information. Therefore, the pat-
tern correction was positive. For example, one such model with a
1/f noise spectrum and a spike jitter of o = 2.5 msec had a pattern
correction of Z = +14.4%.

In our data, it is not uncommon to observe jitter from trial to trial
in which the relationships between nearby spikes are preserved.
Model C suggests that this would be one source of temporal coding
in our data, but there are probably others. Another source of
trial-to-trial noise is the variable presence of a spike as opposed to
jitter in the timing of the spike. We sometimes observe positive
correlations between two unreliable events; if one spike is present,
both are. Conversely, we find cases of “either—or” firing in which
events separated by several milliseconds in time occur in a mutually
exclusive manner. We suspect that these types of temporally cor-
related noise also contribute to pattern coding. Figure 1c illustrates
all three types of noise in our data.

DISCUSSION

We have demonstrated information rates in excess of 100 bits/sec
and rates of 3—4 bits/spike in spike trains of single neurons in the
cat LGN. Thus, LGN cells can carry high rates of information
about dynamic stimuli, as a similar analysis has revealed of several
other types of neurons (Berry et al., 1997; de Ruyter van
Steveninck et al., 1997; Buracas et al., 1998; Strong et al., 1998).
Previous studies of the LGN have demonstrated much lower infor-
mation rates (Eckhorn and Popel, 1975; McClurkin et al., 1991;
Dan et al., 1998; Reinagel et al., 1999). We attribute the difference
to two factors. First, the previous studies made use of approxima-
tions that were known to underestimate the information content,
whereas our direct method was much less constrained. Second, our
full-field white-noise stimulus may have been a stronger stimulus,
at least for some cells, than the stimuli used previously.

One of the fundamental questions of neuroscience is how sen-
sory information is encoded by neural activity. The first evidence

on this question was the discovery that the amount of pressure of
a tactile stimulus correlated with the number of spikes elicited in a
somatosensory neuron over the duration of the stimulus (Adrian
and Zotterman, 1926). Thus, firing rate could be said to encode
that stimulus parameter. Most of our present understanding of
sensory neural coding is based on similar observations; the firing
rates of different neurons are correlated with different stimulus
parameters (Barlow, 1972).

It has long been recognized that such a “rate code” may not
exhaustively describe the neural code and that additional features
of spike timing may also carry stimulus information (MacKay and
McCulloch, 1952). In the recent literature on neural coding, there
has been considerable debate on the existence and nature of such
“temporal codes” (Shadlen and Newsome, 1994, 1995, 1998; Fer-
ster and Spruston, 1995; Sejnowski, 1995; Stevens and Zador, 1995;
Rieke et al., 1997; Victor, 1999). This debate has been fueled by
accumulating evidence that precise times of spikes do carry infor-
mation, especially when stimuli themselves are temporally varying.

Much of the discussion in the literature has confounded two
different ideas. The first idea is that the firing rate (or probability
of firing) may vary on a much finer time scale than was classically
explored: milliseconds rather than hundreds of milliseconds. The
second idea is that temporal patterns of firing must be considered
to fully describe the neural code. To date, most of the evidence for
information in spike timing in single neurons has been consistent
with the first idea. We have proposed a way to uncouple these two
phenomena and have demonstrated that both forms of coding are
evident in our data.

Our results constitute an existence proof that, in the LGN, visual
information can be encoded both by temporally precise modulation
of firing rate, to ~1 msec resolution, and also in firing patterns that
extend over time. The time scales and relative contributions of
spike timing and spike pattern will presumably be different for
different types of neurons. From our small sample of cells, we
cannot yet say whether there will be systematic differences between
different cell types in the LGN. Even for a single neuron, results
may depend significantly on the particular set of stimuli used.
Finally, we have not considered spike patterns across multiple cells,
which may introduce redundancy or may encode additional visual
information (Abeles et al., 1994; Meister et al., 1995; Funke and
Worgotter, 1997; Dan et al., 1998).

Temporal precision of firing

We began by analyzing the temporal precision with which spike
timing is visually driven. Sharp peaks in the PSTH revealed that
rate was modulated on time scales as fine as 1 msec (Fig. 1). As a
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result of this precision, our estimates of visual information de-
pended strongly on the temporal resolution of the analysis, down to
at least 1 msec (Fig. 3).

Similar studies have found high temporal precision in several
other visual cell types (Berry et al., 1997; de Ruyter van Steveninck
et al., 1997; Buracas et al., 1998; Strong et al., 1998) (but see
Dimitrov and Miller, 2000). The precision we observe is unusually
high, but direct comparisons are difficult because the temporal
precision depends on the stimulus set used. For example, when cat
LGN cells were studied with drifting sinusoidal gratings, a some-
what lower precision was found in responses to high-contrast grat-
ings (o0 = 5 msec), and substantially less precision was seen in
responses to moderate contrast gratings (Reich et al., 1997). We
also observed lower precision in the responses to checkerboard
M-sequence stimuli (Reid et al., 1997) (~10 msec, our unpublished
observation). The white-noise stimulus used here had moderate
contrast (Fig. 1a) (see Materials and Methods). It remains possible
that other stimuli could elicit even higher temporal precision in
LGN responses.

Previous discussions have proposed criteria for distinguishing a
rate code from a temporal code on the basis of the time scale alone.
For example, when long time scales are considered, firing rate can
be defined by the number of events counted from an individual cell
in a single trial. When very short time scales are used, firing
probability would have to be estimated from many trials or cells.
Thus, one relevant time scale is the mean interspike interval; time
bins longer than this have on average >1 spike and shorter bins
have on average <1 spike (Fig. 3, ¢). However, we note that the
mode interval (Fig. 3, b) is typically far shorter than the mean
interval. The absolute refractory period of the cell (Fig. 3, a)
defines the absolute minimum interval and places a limit on the
maximum firing rate the neuron could sustain.

Another intrinsic time scale in the experiment is the integration
time of the neuron. For instance, this might be represented by the
duration of the positive phase of the neural response to a brief
stimulus pulse (Fig. 3, d). A convolution of the stimulus by the
impulse response would be expected to temporally filter (blur) the
stimulus at approximately this time scale.

Alternatively, one might compare the precision of the neural
response with the time scale of the stimulus rather than any neural
parameter. It has been argued that, when temporal structure in the
response matches the temporal structure in the stimulus, the neu-
ron simply represents time with time. According to this view, if the
spike train encodes information using a higher temporal precision
than the time scale on which the stimulus changes, the neuron
would be using temporal patterns to encode something nontempo-
ral (Theunissen and Miller, 1995). For time-varying stimuli, a
dividing line might then be drawn at the maximum temporal
frequency of the stimulus. In a stimulus like ours, this would
typically be given as the frame update rate (Fig. 3, ¢), although we
note that the physical stimulus contains much higher temporal
frequencies. For transiently presented, static stimuli, this time scale
corresponds to the stimulus duration (McClurkin et al., 1991;
Heller et al., 1995; Victor and Purpura, 1996). A limiting case for
this distinction, not addressed in our study, is to compare time-
varying stimuli with constant stimuli (de Ruyter van Steveninck et
al., 1997; Buracas et al., 1998; Warzecha et al., 1998).

We believe that all of these arguments identify landmarks along
a continuum and that information encoded in the firing rate of a
cell at any time scale is a direct extension of the idea of a rate code.
A qualitative distinction can be made between all of these forms of
coding and any code that depends on relationships within the spike
train. Such pattern information cannot be extracted from the rate
(or probability) of firing alone, regardless of time scale.

Poisson models

A common model for a neuronal rate code is a homogeneous
Poisson process whose mean rate is stimulus-dependent (Shadlen
and Newsome, 1994, 1995). A natural extension of this model is an
inhomogeneous Poisson process whose time-varying mean rate is
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determined by the stimulus (Buracas et al., 1998). We constructed
model Poisson spike trains using the observed PSTH for the time
varying rate and found that this model encoded 30% less visual
information than the real data (de Ruyter van Steveninck et al.,
1997). However, even when we neglect temporal patterns (using
L =1, 67 = 1 msec), the model Poisson trains had higher estimated
entropy and less estimated information than the real spike trains
(Fig. 4, Poisson). Therefore, even if the cell had had no pattern
information (Z = 0), it would have encoded more information than
this Poisson control. Extrapolated to infinite word length, the
difference between the cell and the Poisson model was 29 bits/sec,
but only approximately half of this discrepancy (Z = 18 bits/sec)
was directly attributed to temporal patterns by our analysis.

The information estimates from the cell and the Poisson model
differ at L = 1 because the number of spikes in each time bin was
more precise than expected from a Poisson process, as has been
observed for several other types of neurons (Levine et al., 1988;
Berry et al., 1997; de Ruyter van Steveninck et al., 1997). The
variance of spike count divided by the mean spike count was 0.91 =
0.04 in 1 msec bins and 0.38 = 0.23 in 128 msec bins (n = 11 cells)
compared with a ratio of 1 for any Poisson process. As a result,
Poisson models underestimated the information rates of each of
our cells (by 19.9 + 9.6%, n = 11, at 87 = 1 msec) whether the cells
had negative or positive Z. We conclude that a comparison be-
tween the Poisson control and the actual data are not sufficient to
show that information is coded in temporal patterns of firing.

Temporal patterns of firing

In our second analysis, we held the temporal resolution of the
analysis constant and considered the role of temporal patterns in
the neural code. We define a quantity, Z, that is positive when
information is encoded in temporal patterns and negative when
patterns constitute redundancy in the code. We found that as much
as 25% of the visual information could be attributed explicitly to
firing patterns. Using 1 msec bins, we had enough data to explore
words of up to 10 msec, and information continued to increase with
L up to this limit (Fig. 4). Using lower resolutions to explore longer
time windows, we estimated that patterns contain information to at
least 64 msec. Interestingly, a quite different analysis revealed a
similar time scale for temporal patterns in cortical responses to
low-entropy stimuli (periodic stimuli or transiently presented, static
textures) (Victor and Purpura, 1997; Reich et al., 1998).

Temporal patterns could be caused by a direct effect of one
stimulus-evoked spike on the subsequent ability of the stimulus to
evoke other spikes at nearby times in the same trial. Examples of
this type that have been discussed in the context of information
coding include refractoriness (Berry and Meister, 1998) and some
forms of bursting (Cattaneo et al., 1981; DeBusk et al., 1997; but
see below).

Alternatively or in addition, the ability of the stimulus to evoke
spikes could be modulated by an external noise source that has a
long enough time scale to affect more than one spike. This requires
merely that the noise have a lower frequency spectrum than the
visual signal after temporal filtering by neural mechanisms, as in
simulation C above. In either case, observing extended patterns of
spikes would reveal that response patterns were more predictable
than if the noise had been independent from bin to bin.

Although some cells encoded information in temporal patterns,
we found other cells with a net temporal redundancy (Z < 0). The
largest such effect, Z = —9%, was from a cell with a high burst
fraction (15%). LGN neurons fire distinct bursts (Sherman, 1996),
which have been shown to carry visual information efficiently
(Reinagel et al., 1999). Because bursts have a stereotyped structure,
they are internally redundant. Any spike in the burst conveys much
the same information as any other. Thus, when we assume temporal
independence (L = 1), we overestimate the total information in the
burst (see simulation B above). We therefore suggest that these
bursts contribute a negative term to the pattern correction Z. This
idea is consistent with our finding of a significant negative corre-
lation between burst fraction and Z (Fig. 5c¢). Nonetheless, bursting
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and temporal redundancy do not preclude high rates of informa-
tion; the highest information rate in our sample (98 bits/sec at 7 =
1 msec) was from a cell with a high burst rate (14%) and a negative
pattern contribution (Z = —2.5%).

For all cells in this study, the majority of the encoded informa-
tion was contained in the temporal precision of firing alone;
whether negative or positive, the pattern correction Z was never
greater than 25%. Nonetheless, short-range temporal interactions
served to increase visual information substantially for many cells
(Fig. 5). This indicates that, in those cells, any redundancy between
time bins was more than compensated by synergistic effects. We
have no reason to think that this result is particular to LGN
neurons. Instead, it may be found that neurons in many parts of the
brain can exploit both precise spike timing and temporal patterns
of spikes to encode useful information. This suggests a possible
function for the known sensitivity of neurons to the precise timing
and patterns of spikes in their input (Usrey et al., 2000).

Appendix

We define a pattern correction term Z as the difference between
the extrapolated information rate for infinitely long words,
I(lim L — =), and the information rate in the average individual
time bin, /(L = 1). This correction depends on one parameter, the
temporal resolution 67

Z(87) = lim I(L, 67) — I(L = 1, &7)

L —>x

3)

The term I(L = 1,57) represents the estimate of information rate
that would be obtained on the approximation that time bins are
statistically independent within the spike train. The term I(lim L —
o, 87) represents the true information rate when all such statistical
dependence is taken into account. Thus, Z is a measure of how the
relationships between time bins (temporal patterns in the spike
train) affect the encoding of stimulus information.

For the interested reader, we derive below an alternative, equiv-
alent expression for Z directly in terms of the statistical structure
within spike trains.

The need for Z arises because of the statistical dependence
between time bins within the spike train. This property of a spike
train can be measured by the average mutual information between
a single bin and all other time bins. We will call this I, for
“internal” information. /;,, measures the average reduction in un-
certainty about one bin if you know the others, which is to say, the
entropy of a single bin minus the entropy of a bin given all other
bins. The average entropy of one bin given all others is equal to the
average entropy per bin in the entire sequence (Shannon, 1948, his
Theorem 5). Thus, we can write [;,,, in the terms of Eq. 2 as follows:

L(87) = H(L = 1, 87) — lim H(L, 87) (4)

L —»

We stress that [;,,, is not information about the stimulus. Rather, it
measures the predictability of one time bin of the response from
the rest of the response. Note that [, takes into account statistical
dependencies of all orders, not just those revealed by an autocor-
relation function. In the following discussion, the dependence of all
values on the choice of 87 is assumed but not indicated.

If time bins are statistically independent of one another, then
H(L = 1) = H(lim L — «) and therefore I;,, = 0. Otherwise,
H(L = 1) is the maximum entropy, consistent with the observed
probability distribution of spike counts in individual bins, and
therefore sets an upper bound on the true entropy: H({L = 1) =
H(lim L — ). This inequality guarantees that [, = 0.

A simple rearrangement of Equation 4 produces

lim HIL)=H(L =1) — I,

L—»

)

By substituting the right side of Equation 4’ for both H,,, and
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H, i« in Equation 1, we can rewrite the mutual information be-
tween the response and the stimulus as follows:

lim I(L) = lim H, — lim H e

Lo Lo L—w
= [Hia(L = 1) = Tingrora] —
[Hnoise(L = 1) - Iim,noise]
= [Hiw(L = 1) = Hpoise(L = D] +
Uintnoise = Lint.total]
=I(L =1) + [Lintnoise = Lintrotall
limI(L) — I(L=1)= [Iinl,noise - Iint,lotal]

L—>w

Finally, substituting Z from Equation 3, we arrive at an alternative
expression for the pattern correction Z in terms of two measure-
ments of [,

Z = Iint,noisc - (5)
This formalizes the intuitive notion that the pattern correction Z is
entirely attributable to the statistical dependence between bins
within spike trains. Recall that all values in Equation 5 depend on
the temporal resolution &7, not indicated.

Although both I ;s and I o, must be positive, the differ-
ence between them, Z, may be positive or negative. This is why
I(L = 1) is neither an upper bound nor a lower bound on the true
information rate. To the extent that the dependence between bins
renders the visual information in different bins redundant, L. = 1
will produce an overestimate, our estimate will decrease with
increasing L, and the pattern correction will be negative, Z < 0. On
the other hand, to the extent that relationships between bins are
used to encode stimulus information, L = 1 will produce an
underestimate, and our estimate will increase with increasing L,
reflecting a positive pattern correction, Z > 0.

In the special case of a spike train in which the time bins are
statistically independent, I, oise = 0 and I;, oy = 0, leading
trivially to Z = 0 (Eq. 5) and thus I(lim L — «©) = (L = 1).
However, it is also possible to observe Z = 0 even when there is
statistical dependence between bins (whenever I, 1oise = Lint.total)-
Temporal structure present in the spike trains may contain a
mixture of temporal patterns that encode information synergisti-
cally and others that encode stimuli redundantly.

Iint,total

Note added in proof

Two different variants of the direct-information method have been
used recently to support similar conclusions for visual neurons in
the fly (Brenner et al., 1999) and visual cortical neurons in the
primate (Reich et al., 2000).
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