The Neurobiology of Decision Making

CSE 528 May 31, 2011

Michael Shadlen, MD PhD
Howard Hughes Medical Institute
Department of Physiology & Biophysics
National Primate Research Institute
University of Washington
Seattle, WA

www.shadlen.org

From sensorimotor integration to cognition

Outline

- 1. Probabilistic reasoning
- 2. Perceptual decisions: speed and accuracy
- 3. Optional: Sequential analysis, Wald's martingale, logistic choice function
- 4. Variance and covariance as signatures of neural computation
- 5. Confidence
- 6. Optional: Integration of prior probability & evidence

What is a decision?

- A commitment to a proposition or plan of action, ...
 - based on evidence, prior knowledge, payoff, urgency
 - often requiring flexibility, contingency, interpretation

Some complex decisions

- Choosing a life partner
- Choosing a president
- Whether to invade Iraq

From sensorimotor integration to cognition

Lewis and Van Essen, 2000

Spatially selective, persistent activity

Spatially selective, persistent activity

Spatially selective, persistent activity

Freedom From Immediacy

- 10 different shapes w/ different weights
- 4 shapes in a trial, drawn randomly with replacement
- each shape appears with equal probability
- sum of the weights is log odds in favor of red:

$$log_{10}$$
 $\frac{P(red | shapes)}{P(green | shapes)} = logLR$

Probabilistic Categorization

Fit with logistic function

Allows us to ascertain...

eye position in yellow One target in the RF of the LIP neuron; other outside

Spikes as shapes are added to the display

logLR for Tin logLR for Tin

LIP represents accumulating evidence in units proportional to logLR

ban is unit of logLR

Conclusions from probabilistic reasoning experiment

- Persistent activity represents accumulation of evidence:
 - a quantitative mapping between neural response and probability
- This permits "optimal" combination of cues with diverse reliability

I'm pleased we can teach monkeys to do this.

Convertaobsecvation A X N to Weight of Evidence or Degree of Belief

Abraham Wald

Outline

- 1. Probabilistic reasoning
- 2. Perceptual decisions: speed and accuracy
- 3. Optional: Sequential analysis, Wald's martingale, logistic choice function
- 4. Variance and covariance as signatures of neural computation
- 5. Confidence
- 6. Optional: Integration of prior probability & evidence

Direction-Discrimination Task

Newsome, Britten & Movshon, 1989

Direction-Discrimination Task

Newsome, Britten & Movshon, 1989

Direction-Discrimination Task

Newsome, Britten & Movshon, 1989

Direction-Discrimination Task Reaction-time version

Direction selective neurons Areas MT/V5 and MST

LIP activity during direction discrimination task

Response Field

LIP activity during direction discrimination task

4-choice decisions

Anne Churchland

Usher & McClelland, 2001 Churchland, Kiani & Shadlen, 2008

Outline

- 1. Probabilistic reasoning
- 2. Perceptual decisions: speed and accuracy
- 3. Optional: Sequential analysis, Wald's martingale, logistic choice function
- 4. Variance and covariance as signatures of neural computation
- 5. Confidence
- 6. Optional: Integration of prior probability & evidence

Sequential analysis framework

$$\begin{array}{cccc} e_{0} & \rightarrow f_{0} & e_{0} & \Longrightarrow \underset{or}{Stop} \\ & \swarrow & \\ & e_{1} \rightarrow & f_{1} \left(e_{0}, e_{1} \right) & \Longrightarrow \underset{or}{Stop} \\ & \swarrow & & \swarrow & \\ \end{array}$$

Choice probability & decision time from bounded accumulation

Moment Generating Function

$$M_X(\theta) \equiv E \left[e^{\theta X} \right] = \int_{-\infty}^{\infty} f(x) e^{\theta x} dx$$
 $M_X'(\theta) = \frac{d}{d\theta} E \left[e^{\theta X} \right]$

$$M_X'(\theta) = \frac{d}{d\theta} E \left[e^{\theta X} \right]$$

$$= \frac{d}{d\theta} \int_{-\infty}^{\infty} f(x)e^{\theta x} dx$$

$$= \int_{-\infty}^{\infty} x f(x) e^{\theta x} dx$$

$$M'_X(0) = \int_{-\infty}^{\infty} x f(x) dx = E[x]$$

Normal distribution

$$M_X(\theta) = e^{\theta\mu + \frac{1}{2}\theta^2\sigma^2}$$

$$\theta_1 = -\frac{2\mu}{\sigma^2}$$

$$\approx 2kC \quad (k > 0)$$

Wald's Martingale

Accumulation	Wald's Martingale
$Y_0 = 0 + X_1$	$Z_0 = 1 \times \frac{e^{\theta X_1}}{M(\theta)}$
Y_1 $+X_2$	Z_1 $\times \frac{e^{\theta X_2}}{M(\theta)}$
Y_2	Z_{2}
$Y_{n-1} + X_n$ $Y_n = \sum_{i=1}^n X_n$	$Z_{n-1} \searrow \times \frac{e^{\theta X_n}}{M(\theta)}$ $Z_n = \frac{e^{\theta Y_n}}{M^n(\theta)}$

Wald's Martingale

Accumulation Wald's Martingale $E\begin{bmatrix} Z_{n+1} & X_{0}, Y_{1}, Y_{2}, \dots, Y_{n} \end{bmatrix} = E\begin{bmatrix} M_{X}^{-(n+1)}(\theta_{\theta})e^{\theta Y_{n+1}} | Y_{0}, Y_{1}, Y_{2}, \dots, Y_{n} \end{bmatrix}$ $+X_{1} = E\begin{bmatrix} M_{X}^{-(n+1)}(\theta)e^{\theta (Y_{n}+X_{n+1})} \end{bmatrix} \text{ by the rule for generating } Y_{n+1}$ $Y_{1} = E[M_{X}^{-1}(\theta)M_{X}^{-n}(\theta)e^{\theta Y_{n}}e^{\theta X_{n+1}}]$ $+X_{2} = E[M_{X}^{-1}(\theta)X_{n}^{-n}(\theta)e^{\theta Y_{n}}e^{\theta X_{n+1}}] \text{ using the definition of } Z_{n}$ $Y_{2} = Z_{2}M_{X}^{-1}(\theta)Z_{n}E[e^{\theta X_{n+1}}] \text{ because } Z_{n} \text{ and } M_{X}(\theta) \text{ are known}$ $= Z_n$ $\vdots \qquad \vdots \qquad \vdots$ $E[Z_n] = E[M_X^{-n}(\theta)e^{\theta Y_n}]$ $Y_{n-1} \longrightarrow +X_n \qquad Z_{n-M_X} = M_X^{-n}(\theta) E \left[e^{\theta Y_n} \right]$ $= M_X^{-n}(\theta) M_{Y_M} = \frac{e^{\theta X_n}}{M(\theta)}$ $= \frac{1}{2} e^{\theta Y_n}$ $Z_n = \frac{1}{2} e^{\theta Y_n}$ $Z_n = \frac{1}{2} e^{\theta Y_n}$

MGF of the bounded accumulation

Calculate two ways:

(i) by brute force from 2 possible values

$$\begin{split} M_{\tilde{Y}}(\theta) &= E[e^{\theta \tilde{Y}}] \\ &= P_{+}e^{\theta A} + (1 - P_{+})e^{-\theta A} \end{split}$$

(ii) using Wald's Identity $E[M_v^{-n}(\theta)e^{\theta Y_n}]$ Define the stopped accum

$$\tilde{Z} = M_{X}^{-\tilde{n}}(\theta)e^{\theta\tilde{Y}}$$

Wald's martingale, whe accumulation stops

$$E\left[\tilde{Z}\right] = E\left[Z_n\right]$$

optional stopping theo

$$E \left[M_{X}^{-\tilde{n}}(\theta) e^{\theta \tilde{Y}} \right] = 1$$

$$E\left[e^{\theta_1\tilde{Y}}\right] = 1$$

 $E[e^{\theta_1 \tilde{Y}}] = 1$ simplify at the special

So, at special root of mgf

$$M_{\tilde{Y}}(\theta_1) = E[e^{\theta_1 \tilde{Y}}]$$

$$= P_+ e^{\theta_1 A} + (1 - P_+)e^{-\theta_1 A}$$

$$= 1$$

$$P_{+} = \frac{1 - e^{-\theta_{1}A}}{e^{\theta_{1}A} - e^{-\theta_{1}A}}$$

$$= \frac{1 - e^{-\theta_{1}A}}{e^{-\theta_{1}A} (e^{\theta_{1}A} + 1)(e^{\theta_{1}A} - 1)}$$

$$= \frac{1}{1 + e^{\theta_{1}A}}$$

Decision time

$$\begin{split} E\left[M_{x}^{-\tilde{n}}(\theta)e^{\theta\tilde{Y}}\right] &= 1 \qquad \text{Wald's identity} \\ \frac{d}{d\theta}E\left[M_{x}^{-\tilde{n}}(\theta)e^{\theta\tilde{Y}}\right] &= 0 \\ &= E\left[e^{\theta\tilde{Y}}\tilde{Y}M_{x}^{-\tilde{n}}(\theta) - e^{\theta\tilde{Y}}\tilde{n}M_{x}^{-1-\tilde{n}}(\theta)M_{x}'(\theta)\right] \\ &= E\left[\tilde{Y} - \tilde{n}\mu\right] \qquad \text{holds for } \theta = 0 \\ E\left[\tilde{n}\right] &= \frac{E\left[\tilde{Y}\right]}{\mu} \qquad \text{(for } \mu \neq 0) \\ &= \frac{(2P_{+} - 1)A}{\mu} \qquad \text{recall that} \qquad P_{+} = \frac{1}{1 + e^{-2kCA}} \\ &= \frac{A}{\mu}\left(\frac{2}{1 + e^{\theta_{+}A}} - 1\right) \\ &= \frac{A}{\mu}\left(\frac{1 - e^{\theta_{+}A}}{1 + e^{\theta_{+}A}}\right) \\ &= \frac{A}{\mu}\left(\frac{e^{-\frac{\theta_{+}A}{2}} - \frac{\theta_{+}A}{2}}{e^{-\frac{\theta_{+}A}{2}} + e^{-2}}\right) \qquad \text{for the dots task} \\ &= \frac{A}{\mu}\tanh\left(-\frac{\theta_{+}A}{2}\right) \qquad \qquad \lim_{C \to 0} \frac{A}{kC}\tanh(kCA) = A^{2} \end{split}$$

Outline

- 1. Probabilistic reasoning
- 2. Perceptual decisions: speed and accuracy
- 3. Optional: Sequential analysis, Wald's martingale, logistic choice function
- 4. Variance and covariance as signatures of neural computation
- 5. Confidence
- 6. Optional: Integration of prior probability & evidence

Doubly stochastic point processes

Law of total variance

$$Var[X] = Var[\langle X|Y\rangle] + \langle Var[X|Y]\rangle$$
variance of conditional expectation of conditional variance

Applied to DSPPs

$$\sigma_{N_i}^2 = \sigma_{\langle N_i \rangle}^2 + \left\langle \sigma_{N|\lambda_i}^2 \right\rangle$$
Total measured variance

Total measured variance

Total measured variance (PPV)

$$s_{\langle N_i \rangle}^2 = s_{N_i}^2 - \phi \overline{N_i}$$

Three analysis epochs

Pre-motion epoch

Pre-motion epoch

Early motion viewing

Early motion viewing

Doubly stochastic point processes

Law of total covariance

$$Cov[N_{i}, N_{j}] = \underbrace{Cov[\langle N_{i}, N_{j} | \lambda_{i}, \lambda_{j} \rangle]}_{\text{covariance of conditional expectation}} + \underbrace{\langle Cov[N_{i}, N_{j} | \lambda_{i}, \lambda_{j}] \rangle}_{\text{expectation of conditional expectation}}$$

Doubly stochastic point processes

Law of total covariance

$$Cov[N_{i},N_{j}] = \underbrace{Cov[\left\langle N_{i},N_{j} \middle| \lambda_{i},\lambda_{j} \right\rangle]}_{\text{covariance of conditional expectation}} + \underbrace{\left\langle Cov[N_{i},N_{j} \middle| \lambda_{i},\lambda_{j} \right] \right\rangle}_{\text{expectation of conditional expectation}}$$

Applied to DSPPs

$$= \begin{cases} VCE + PPV \\ CovCE + 0 \end{cases} i = j$$

$$i \neq j$$

Early motion viewing

Early motion viewing

Decision termination

Decision termination

Decision termination

Summary of section

- VarCE and CorCE are useful tools
 - Capture "variation in what is computed"
 - Expose features of neural computations in decision making

e.g., integration, mixtures, termination bound, refutes change point and several plausible alternative models

• The main limitation is in estimating ϕ

Outline

- 1. Probabilistic reasoning
- 2. Perceptual decisions: speed and accuracy
- 3. Optional: Sequential analysis, Wald's martingale, logistic choice function
- 4. Variance and covariance as signatures of neural computation
- 5. Confidence
- 6. Optional: Integration of prior probability & evidence

based on Hampton (2001) PNAS

Roozbeh Kiani

msoder add

Roozbeh Kiani

Roozbeh Kiani

Log odds of making the correct choice

Log odds of making the correct choice

Kiani & Shadlen, 2009

FORMAT

Conclusions from confidence experiment

- It is possible to study "degree of belief" in neurophysiology
- Bounded evidence accumulation unites 3 fundamental measures of choice behavior:

accuracy, response time, confidence

• Suggests probability is represented by firing rate & elapsed time

Work on

Possible t deg of be wagering